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Regularization Networks and Support Vector Machines are techniques for solving certain
problems of learning from examples – in particular, the regression problem of approximating
a multivariate function from sparse data. Radial Basis Functions, for example, are a special
case of both regularization and Support Vector Machines. We review both formulations in
the context of Vapnik’s theory of statistical learning which provides a general foundation
for the learning problem, combining functional analysis and statistics. The emphasis is on
regression: classification is treated as a special case.
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1. Introduction

The purpose of this paper is to present a theoretical framework for the problem
of learning from examples. Learning from examples can be regarded as the regression
problem of approximating a multivariate function from sparse data – and we will take
this point of view here1. The problem of approximating a function from sparse data is
ill-posed and a classical way to solve it is regularization theory [10,11,92]. Classical
regularization theory, as we will consider here, formulates the regression problem as
a variational problem of finding the function f that minimizes the functional

min
f∈H

H[f ] =
1
l

l∑
i=1

(
yi − f (xi)

)2
+ λ‖f‖2

K , (1.1)

where ‖f‖2
K is a norm in a Reproducing Kernel Hilbert Space H defined by the

positive definite function K, l is the number of data points or examples (the l pairs
(xi, yi)) and λ is the regularization parameter (see the seminal work of [102]). Under

1 There is a large literature on the subject: useful reviews are [19,39,44,96,102] and references therein.
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rather general conditions the solution of equation (1.1) is

f (x) =
l∑
i=1

ciK(x, xi). (1.2)

Until now the functionals of classical regularization have lacked a rigorous justifi-
cation for a finite set of training data. Their formulation is based on functional analysis
arguments which rely on asymptotic results and do not consider finite data sets2. Reg-
ularization is the approach we have taken in earlier work on learning [39,69,77]. The
seminal work of Vapnik [94–96] has now set the foundations for a more general theory
that justifies regularization functionals for learning from finite sets and can be used to
extend considerably the classical framework of regularization, effectively marrying a
functional analysis perspective with modern advances in the theory of probability and
statistics. The basic idea of Vapnik’s theory is closely related to regularization: for a
finite set of training examples the search for the best model or approximating function
has to be constrained to an appropriately “small" hypothesis space (which can also be
thought of as a space of machines or models or network architectures). If the space
is too large, models can be found which will fit exactly the data but will have a poor
generalization performance, that is, poor predictive capability on new data. Vapnik’s
theory characterizes and formalizes these concepts in terms of the capacity of a set
of functions and capacity control depending on the training data: for instance, for a
small training set the capacity of the function space in which f is sought has to be
small whereas it can increase with a larger training set. As we will see later in the
case of regularization, a form of capacity control leads to choosing an optimal λ in
equation (1.1) for a given set of data. A key part of the theory is to define and bound
the capacity of a set of functions.

Thus the key and somewhat novel theme of this review is (a) to describe a unified
framework for several learning techniques for finite training sets and (b) to justify them
in terms of statistical learning theory. We will consider functionals of the form

H[f ] =
1
l

l∑
i=1

V
(
yi, f (xi)

)
+ λ‖f‖2

K , (1.3)

where V (· , ·) is a loss function. We will describe how classical regularization and
Support Vector Machines [96] for both regression (SVMR) and classification (SVMC)
correspond to the minimization of H in equation (1.3) for different choices of V :

• classical (L2) Regularization Networks (RN)

V
(
yi, f (xi)

)
=
(
yi − f (xi)

)2
, (1.4)

2 The method of quasi-solutions of Ivanov and the equivalent Tikhonov’s regularization technique were
developed to solve ill-posed problems of the type Af = F , where A is a (linear) operator, f is the
desired solution in a metric space E1, and F are the “data” in a metric space E2.
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• Support Vector Machines Regression (SVMR)

V
(
yi, f (xi)

)
=
∣∣yi − f (xi)

∣∣
ε
, (1.5)

• Support Vector Machines Classification (SVMC)

V
(
yi, f (xi)

)
=
∣∣1− yif (xi)

∣∣
+

, (1.6)

where | · |ε is Vapnik’s epsilon-insensitive norm (see later), |x|+ = x if x is positive
and zero otherwise, and yi is a real number in RN and SVMR, whereas it takes values
−1, 1 in SVMC. Loss function (1.6) is also called the soft margin loss function. For
SVMC, we will also discuss two other loss functions:

• the hard margin loss function:

V
(
yi, f (x)

)
= θ
(
1− yif (xi)

)
, (1.7)

• the misclassification loss function:

V
(
yi, f (x)

)
= θ
(
−yif (xi)

)
, (1.8)

where θ(·) is the Heaviside function. For classification one should minimize (1.8) (or
(1.7)), but in practice other loss functions, such as the soft margin one (1.6) [22,95],
are used. We discuss this issue further in section 6.

The minimizer of (1.3) using the three loss functions has the same general
form (1.2) (or f (x) =

∑l
i=1 ciK(x, xi) + b, see later) but interestingly different prop-

erties. In this review we will show how different learning techniques based on the
minimization of functionals of the form of H in (1.3) can be justified for a few choices
of V (·, ·) using a slight extension of the tools and results of Vapnik’s statistical learning
theory. In section 2 we outline the main results in the theory of statistical learning and
in particular Structural Risk Minimization – the technique suggested by Vapnik to solve
the problem of capacity control in learning from “small” training sets. At the end of
the section we will outline a technical extension of Vapnik’s Structural Risk Minimiza-
tion framework (SRM). With this extension both RN and Support Vector Machines
(SVMs) can be seen within a SRM scheme. In recent years a number of papers claim
that SVM cannot be justified in a data-independent SRM framework (e.g., [86]). One
of the goals of this paper is to provide such a data-independent SRM framework that
justifies SVM as well as RN. Before describing regularization techniques, section 3
reviews some basic facts on RKHS, which are the main function spaces on which this
review is focused. After the section on regularization (section 4) we will describe
SVMs (section 5). As we saw already, SVMs for regression can be considered as a
modification of regularization formulations of the type of equation (1.1). Radial Basis
Functions (RBF) can be shown to be solutions in both cases (for radial K) but with a
rather different structure of the coefficients ci.

Section 6 describes in more detail how and why both RN and SVM can be jus-
tified in terms of SRM, in the sense of Vapnik’s theory: the key to capacity control is
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how to choose λ for a given set of data. Section 7 describes a naive Bayesian Max-
imum A Posteriori (MAP) interpretation of RNs and of SVMs. It also shows why a
formal MAP interpretation, though interesting and even useful, may be somewhat mis-
leading. Section 8 discusses relations of the regularization and SVM techniques with
other representations of functions and signals such as sparse representations from over-
complete dictionaries, Blind Source Separation, and Independent Component Analysis.
Finally, section 9 summarizes the main themes of the review and discusses some of
the open problems.

2. Overview of statistical learning theory

We consider the case of learning from examples as defined in the statistical
learning theory framework [94–96]. We have two sets of variables x ∈ X ⊆ Rd and
y ∈ Y ⊆ R that are related by a probabilistic relationship. We say that the relationship
is probabilistic because generally an element of X does not determine uniquely an
element of Y , but rather a probability distribution on Y . This can be formalized
assuming that a probability distribution P (x, y) is defined over the set X × Y . The
probability distribution P (x, y) is unknown, and under very general conditions can
be written as P (x, y) = P (x)P (y|x) where P (y|x) is the conditional probability of y
given x, and P (x) is the marginal probability of x. We are provided with examples of
this probabilistic relationship, that is, with a data set Dl ≡ {(xi, yi) ∈ X×Y }li=1 called
the training data, obtained by sampling l times the set X × Y according to P (x, y).
The problem of learning consists in, given the data set Dl, providing an estimator,
that is, a function f :X → Y , that can be used, given any value of x ∈ X, to predict
a value y.

In statistical learning theory, the standard way to solve the learning problem
consists in defining a risk functional, which measures the average amount of error
associated with an estimator, and then to look for the estimator, among the allowed
ones, with the lowest risk. If V (y, f (x)) is the loss function measuring the error we
make when we predict y by f (x)3, then the average error is the so-called expected
risk:

I[f ] ≡
∫
X,Y

V
(
y, f (x)

)
P (x, y) dx dy. (2.1)

We assume that the expected risk is defined on a “large” class of functions F and we
will denote by f0 the function which minimizes the expected risk in F :

f0(x) = arg min
F
I[f ]. (2.2)

The function f0 is our ideal estimator, and it is often called the target function4.

3 Typically for regression the loss functions is of the form V (y − f (x)).
4 In the case that V is (y − f (x))2, the minimizer of equation (2.2) is the regression function f0(x) =∫

yP (y|x) dy.
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Unfortunately, this function cannot be found in practice, because the probability
distribution P (x, y) that defines the expected risk is unknown, and only a sample of
it, the data set Dl, is available. To overcome this shortcoming we need an induction
principle that we can use to “learn” from the limited number of training data we have.
Statistical learning theory as developed by Vapnik builds on the so-called empirical
risk minimization (ERM) induction principle. The ERM method consists in using the
data set Dl to build a stochastic approximation of the expected risk, which is usually
called the empirical risk, and is defined as5

Iemp[f ; l] =
1
l

l∑
i=1

V
(
yi, f (xi)

)
. (2.3)

The central question of the theory is whether the expected risk of the minimizer
of the empirical risk in F is close to the expected risk of f0. Notice that the question
is not necessarily whether we can find f0 but whether we can “imitate” f0 in the
sense that the expected risk of our solution is close to that of f0. Formally, the theory
answers the question of finding under which conditions the method of ERM satisfies

lim
l→∞

Iemp
[
f̂l; l
]

= lim
l→∞

I
[
f̂l
]

= I[f0] (2.4)

in probability (all statements are probabilistic since we start with P (x, y) on the data),
where we note with f̂l the minimizer of the empirical risk (2.3) in F .

It can be shown (see, for example, [96]) that in order for the limits in equa-
tion (2.4) to hold true in probability, or more precisely, for the empirical risk mini-
mization principle to be non-trivially consistent (see [96] for a discussion about con-
sistency versus non-trivial consistency), the following uniform law of large numbers
(which “translates” to one-sided uniform convergence in probability of empirical risk
to expected risk in F) is a necessary and sufficient condition:

lim
l→∞

P
{

sup
f∈F

(
I[f ]− Iemp[f ; l]

)
> ε
}

= 0 ∀ε > 0. (2.5)

Intuitively, if F is very “large” then we can always find f̂l ∈ F with 0 empirical error.
This however does not guarantee that the expected risk of f̂l is also close to 0, or close
to I[f0].

Typically in the literature the two-sided uniform convergence in probability:

lim
l→∞

P
{

sup
f∈F

∣∣I[f ]− Iemp[f ; l]
∣∣ > ε

}
= 0 ∀ε > 0 (2.6)

is considered, which clearly implies (2.5). In this paper we focus on the stronger two-
sided case and note that one can get one-sided uniform convergence with some minor
technical changes to the theory. We will not discuss the technical issues involved in the
relations between consistency, non-trivial consistency, two-sided and one-sided uniform

5 It is important to notice that the data terms (1.4)–(1.6) are used for the empirical risks Iemp.



6 T. Evgeniou et al. / Regularization Networks and Support Vector Machines

convergence (a discussion can be found in [96]), and from now on we concentrate on
the two-sided uniform convergence in probability, which we simply refer to as uniform
convergence.

The theory of uniform convergence of ERM has been developed in [94,96–99].
It has also been studied in the context of empirical processes [29,30,74]. Here we
summarize the main results of the theory.

2.1. Uniform convergence and the Vapnik–Chervonenkis bound

Vapnik and Chervonenkis [97,98] studied under what conditions uniform conver-
gence of the empirical risk to expected risk takes place. The results are formulated in
terms of three important quantities that measure the complexity of a set of functions:
the VC entropy, the annealed VC entropy, and the growth function. We begin with
the definitions of these quantities. First we define the minimal ε-net of a set, which
intuitively measures the “cardinality” of a set at “resolution” ε:

Definition 2.1. Let A be a set in a metric space A with distance metric d. For a fixed
ε > 0, the set B ⊆ A is called an ε-net of A in A, if for any point a ∈ A there is a
point b ∈ B such that d(a, b) < ε. We say that the set B is a minimal ε-net of A in A,
if it is finite and contains the minimal number of elements.

Given a training set Dl = {(xi, yi) ∈ X×Y }li=1, consider the set of l dimensional
vectors:

q(f ) =
(
V
(
y1, f (x1)

)
, . . . ,V

(
yl, f (xl)

))
(2.7)

with f ∈ F , and define the number of elements of the minimal ε-net of this set under
the metric

d
(
q(f ), q

(
f ′
))

= max
16i6l

∣∣V (yi, f (xi)
)
− V

(
yi, f

′(xi)
)∣∣

to be NF (ε;Dl) (which clearly depends both on F and on the loss function V ).
Intuitively this quantity measures how many different functions effectively we have at
“resolution” ε, when we only care about the values of the functions at points in Dl.
Using this quantity we now give the following definitions:

Definition 2.2. Given a set X × Y and a probability P (x, y) defined over it, the VC
entropy of a set of functions V (y, f (x)), f ∈ F , on a data set of size l is defined as

HF (ε; l) ≡
∫
X,Y

lnNF (ε;Dl)
l∏
i=1

P (xi, yi) dxi dyi.
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Definition 2.3. Given a set X × Y and a probability P (x, y) defined over it, the
annealed VC entropy of a set of functions V (y, f (x)), f ∈ F , on a data set of size l is
defined as

HFann(ε; l) ≡ ln
∫
X,Y
NF (ε;Dl)

l∏
i=1

P (xi, yi) dxi dyi.

Definition 2.4. Given a set X×Y , the growth function of a set of functions V (y, f (x)),
f ∈ F , on a data set of size l is defined as

GF (ε; l) ≡ ln
(

sup
Dl∈(X×Y )l

NF (ε;Dl)
)
.

Notice that all three quantities are functions of the number of data l and of ε,
and that clearly

HF (ε; l) 6 HFann(ε; l) 6 GF (ε; l).

These definitions can easily be extended in the case of indicator functions, i.e., func-
tions taking binary values6 such as {−1, 1}, in which case the three quantities do not
depend on ε for ε < 1, since the vectors (2.7) are all at the vertices of the hypercube
{0, 1}l.

Using these definitions we can now state three important results of statistical
learning theory [96]:

• For a given probability distribution P (x, y):

1. The necessary and sufficient condition for uniform convergence is that

lim
l→∞

HF (ε; l)
l

= 0 ∀ε > 0.

2. A sufficient condition for fast asymptotic rate of convergence7 is that

lim
l→∞

HFann(ε; l)
l

= 0 ∀ε > 0.

It is an open question whether this is also a necessary condition.

• A sufficient condition for distribution independent (that is, for any P (x, y)) fast rate
of convergence is that

lim
l→∞

GF (ε; l)
l

= 0 ∀ε > 0.

For indicator functions this is also a necessary condition.

6 In the case of indicator functions, y is binary, and V is 0 for f (x) = y, 1 otherwise.
7 This means that for any l > l0 we have that P {supf∈F |I[f ] − Iemp[f ]| > ε} < e−cε

2l for some
constant c > 0. Intuitively, fast rate is typically needed in practice.
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According to statistical learning theory, these three quantities are what one should
consider when designing and analyzing learning machines: the VC-entropy and the
annealed VC-entropy for an analysis which depends on the probability distribution
P (x, y) of the data, and the growth function for a distribution independent analysis.
In this paper we consider only distribution independent results, although the reader
should keep in mind that distribution dependent results are likely to be important in
the future.

Unfortunately the growth function of a set of functions is difficult to compute
in practice. So the standard approach in statistical learning theory is to use an upper
bound on the growth function which is given using another important quantity, the
VC-dimension, which is another (looser) measure of the complexity, capacity, of a set
of functions. In this paper we concentrate on this quantity, but it is important that
the reader keeps in mind that the VC-dimension is in a sense a “weak” measure of
complexity of a set of functions, so it typically leads to loose upper bounds on the
growth function: in general one is better off, theoretically, using directly the growth
function. We now discuss the VC-dimension and its implications for learning.

The VC-dimension was first defined for the case of indicator functions and was
then extended to real valued functions.

Definition 2.5. The VC-dimension of a set {θ(f (x)), f ∈ F}, of indicator functions is
the maximum number h of vectors x1, . . . , xh that can be separated into two classes
in all 2h possible ways using functions of the set.

If, for any number N , it is possible to find N points x1, . . . , xN that can be
separated in all the 2N possible ways, we will say that the VC-dimension of the set is
infinite.

The remarkable property of this quantity is that, although, as we mentioned,
the VC-dimension only provides an upper bound to the growth function, in the case
of indicator functions, finiteness of the VC-dimension is a necessary and sufficient
condition for uniform convergence (equation (2.6)) independent of the underlying
distribution P (x, y).

Definition 2.6. Let A 6 V (y, f (x)) 6 B, f ∈ F , with A and B < ∞. The VC-
dimension of the set {V (y, f (x)), f ∈ F} is defined as the VC-dimension of the set of
indicator functions {θ(V (y, f (x))− α), α ∈ (A,B)}.

Sometimes we refer to the VC-dimension of {V (y, f (x)), f ∈ F} as the VC-
dimension of V in F . It can be easily shown that for y ∈ {−1, +1} and for
V (y, f (x)) = θ(−yf (x)) as the loss function, the VC-dimension of V in F computed
using definition 2.6 is equal to the VC-dimension of the set of indicator functions
{θ(f (x)), f ∈ F} computed using definition 2.5. In the case of real-valued functions,
finiteness of the VC-dimension is only sufficient for uniform convergence. Later in this
section we will discuss a measure of capacity that also provides necessary conditions.



T. Evgeniou et al. / Regularization Networks and Support Vector Machines 9

An important outcome of the work of Vapnik and Chervonenkis is that the uni-
form deviation between empirical risk and expected risk in a hypothesis space can be
bounded in terms of the VC-dimension, as shown in the following theorem:

Theorem 2.7 (Vapnik and Chervonenkis [97]). Let A 6 V (y, f (x)) 6 B, f ∈ F , F be
a set of bounded functions and h the VC-dimension of V in F . Then, with probability
at least 1− η, the following inequality holds simultaneously for all the elements f of
F :

Iemp[f ; l]− (B −A)

√
h ln (2el/h) − ln(η/4)

l

6 I[f ] 6 Iemp[f ; l] + (B −A)

√
h ln (2el/h) − ln(η/4)

l
. (2.8)

The quantity |I[f ] − Iemp[f ; l]| is often called estimation error, and bounds of
the type above are usually called VC bounds8. From equation (2.8) it is easy to see
that with probability at least 1− η:

I
[
f̂l
]
− 2(B −A)

√
h ln (2el/h) − ln(η/4)

l

6 I[f0] 6 I
[
f̂l
]

+ 2(B −A)

√
h ln (2el/h) − ln(η/4)

l
, (2.9)

where f̂l is, as in (2.4), the minimizer of the empirical risk in F .
A very interesting feature of inequalities (2.8) and (2.9) is that they are non-

asymptotic, meaning that they hold for any finite number of data points l, and that the
error bounds do not necessarily depend on the dimensionality of the variable x.

Observe that theorem 2.7 and inequality (2.9) are meaningful in practice only
if the VC-dimension of the loss function V in F is finite and less than l. Since the
space F where the loss function V is defined is usually very large (i.e., all functions
in L2), one typically considers smaller hypothesis spaces H. The cost associated with
restricting the space is called the approximation error (see below). In the literature,
space F where V is defined is called the target space, while H is what is called the
hypothesis space. Of course, all the definitions and analysis above still hold for H,
where we replace f0 with the minimizer of the expected risk in H, f̂l is now the
minimizer of the empirical risk in H, and h the VC-dimension of the loss function V
in H. Inequalities (2.8) and (2.9) suggest a method for achieving good generalization:
not only minimize the empirical risk, but instead minimize a combination of the em-
pirical risk and the complexity of the hypothesis space. This observation leads us to
the method of Structural Risk Minimization that we describe next.

8 It is important to note that bounds on the expected risk using the annealed VC-entropy also exist.
These are tighter than the VC-dimension ones.
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2.2. The method of Structural Risk Minimization

The idea of SRM is to define a nested sequence of hypothesis spaces H1 ⊂ H2 ⊂
· · · ⊂ Hn(l) with n(l) a non-decreasing integer function of l, where each hypothesis
space Hi has VC-dimension finite and larger than that of all previous sets, i.e., if hi
is the VC-dimension of space Hi, then h1 6 h2 6 · · · 6 hn(l). For example, Hi

could be the set of polynomials of degree i, or a set of splines with i nodes, or some
more complicated nonlinear parameterization. For each element Hi of the structure
the solution of the learning problem is

f̂i,l = arg min
f∈Hi

Iemp[f ; l]. (2.10)

Because of the way we define our structure it should be clear that the larger i is,
the smaller the empirical error of f̂i,l is (since we have greater “flexibility” to fit our
training data), but the larger the VC-dimension part (second term) of the right-hand
side of (2.8) is. Using such a nested sequence of more and more complex hypothesis
spaces, the SRM learning technique consists of choosing the space Hn∗(l) for which
the right-hand side of inequality (2.8) is minimized. It can be shown [94] that for
the chosen solution f̂n∗(l),l inequalities (2.8) and (2.9) hold with probability at least
(1− η)n(l) ≈ 1−n(l)η 9, where we replace h with hn∗(l), f0 with the minimizer of the
expected risk in Hn∗(l), namely fn∗(l), and f̂l with f̂n∗(l),l.

With an appropriate choice of n(l)10 it can be shown that as l → ∞ and
n(l)→∞, the expected risk of the solution of the method approaches in probabil-
ity the minimum of the expected risk in H =

⋃∞
i=1Hi, namely I[fH]. Moreover,

if the target function f0 belongs to the closure of H, then equation (2.4) holds in
probability (see, for example, [96]).

However, in practice l is finite (“small”), so n(l) is small which means that
H =

⋃n(l)
i=1 Hi is a small space. Therefore, I[fH] may be much larger than the expected

risk of our target function f0, since f0 may not be in H. The distance between I[fH]
and I[f0] is called the approximation error and can be bounded using results from
approximation theory. We do not discuss these results here and refer the reader to
[26,54].

2.3. ε-uniform convergence and the Vγ-dimension

As mentioned above, finiteness of the VC-dimension is not a necessary condition
for uniform convergence in the case of real valued functions. To get a necessary
condition we need a slight extension of the VC-dimension that has been developed

9 We want (2.8) to hold simultaneously for all spaces Hi, since we choose the best f̂i,l.
10 Various cases are discussed in [27], i.e., n(l) = l.
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(among others) in [2,50], known as the Vγ-dimension11. Here we summarize the main
results of that theory that we will also use later on to design regression machines for
which we will have distribution independent uniform convergence.

Definition 2.8. Let A 6 V (y, f (x)) 6 B, f ∈ F , with A and B < ∞. The Vγ-
dimension of V in F (of the set {V (y, f (x)), f ∈ F}) is defined as the maximum
number h of vectors (x1, y1), . . . , (xh, yh) that can be separated into two classes in all
2h possible ways using rules:

class 1: if V (yi, f (xi)) > s+ γ,

class 0: if V (yi, f (xi)) 6 s− γ

for f ∈ F and some s > 0. If, for any number N , it is possible to find N points
(x1, y1), . . . , (xN , yN ) that can be separated in all the 2N possible ways, we will say
that the Vγ-dimension of V in F is infinite.

Notice that for γ = 0 this definition becomes the same as definition 2.6 for
VC-dimension. Intuitively, for γ > 0 the “rule” for separating points is more restrictive
than the rule in the case γ = 0. It requires that there is a “margin” between the
points: points for which V (y, f (x)) is between s+ γ and s− γ are not classified. As
a consequence, the Vγ-dimension is a decreasing function of γ and in particular is
smaller than the VC-dimension.

If V is an indicator function, say θ(−yf (x)), then for any γ definition 2.8 reduces
to that of the VC-dimension of a set of indicator functions.

Generalizing slightly the definition of equation (2.6) we will say that for a given
ε > 0 the ERM method converges ε-uniformly in F in probability (or that there is
ε-uniform convergence) if

lim
l→∞

P
{

sup
f∈F

∣∣Iemp[f ; l]− I[f ]
∣∣ > ε

}
= 0. (2.11)

Notice that if equation (2.11) holds for every ε > 0 we have uniform convergence
(equation (2.6)). It can be shown (variation of [96]) that ε-uniform convergence in
probability implies that

I
[
f̂l
]
6 I[f0] + 2ε (2.12)

in probability, where, as before, f̂l is the minimizer of the empirical risk and f0 is the
minimizer of the expected expected risk in F12.

The basic theorems for the Vγ-dimension are the following:

11 In the literature, other quantities, such as the fat-shattering dimension and the Pγ-dimension, are also
defined. They are closely related to each other, and are essentially equivalent to the Vγ-dimension for
the purpose of this paper. The reader can refer to [2,7] for an in-depth discussion on this topic.

12 This is like ε-learnability in the PAC model [93].



12 T. Evgeniou et al. / Regularization Networks and Support Vector Machines

Theorem 2.9 (Alon et al. [2]). Let A 6 V (y, f (x))) 6 B, f ∈ F , F be a set of
bounded functions. For any ε > 0, if the Vγ-dimension of V in F is finite for γ = αε
for some constant α > 1

48 , then the ERM method ε-converges in probability.

Theorem 2.10 (Alon et al. [2]). Let A 6 V (y, f (x))) 6 B, f ∈ F , F be a set of
bounded functions. The ERM method uniformly converges (in probability) if and
only if the Vγ-dimension of V in F is finite for every γ > 0. So finiteness of the
Vγ-dimension for every γ > 0 is a necessary and sufficient condition for distribution
independent uniform convergence of the ERM method for real-valued functions.

Theorem 2.11 (Alon et al. [2]). Let A 6 V (y, f (x)) 6 B, f ∈ F , F be a set of
bounded functions. For any ε > 0, for all l > 2/ε2 we have that if hγ is the Vγ-
dimension of V in F for γ = αε (α > 1

48 ), hγ finite, then

P
{

sup
f∈F

∣∣Iemp[f ; l]− I[f ]
∣∣ > ε

}
6 G(ε, l,hγ), (2.13)

where G is an increasing function of hγ and a decreasing function of ε and l, with
G → 0 as l →∞ 13.

From this theorem we can easily see that for any ε > 0, for all l > 2/ε2:

P
{
I
[
f̂l
]
6 I[f0] + 2ε

}
> 1− 2G(ε, l,hγ ), (2.14)

where f̂l is, as before, the minimizer of the empirical risk in F . An important ob-
servation to keep in mind is that theorem 2.11 requires the Vγ-dimension of the loss
function V in F . In the case of classification, this implies that if we want to de-
rive bounds on the expected misclassification we have to use the Vγ-dimension of the
loss function θ(−yf (x)) (which is the VC-dimension of the set of indicator functions
{sgn(f (x)), f ∈ F}), and not the Vγ-dimension of the set F .

The theory of the Vγ-dimension justifies the “extended” SRM method we describe
below. It is important to keep in mind that the method we describe is only of theoretical
interest and will only be used later as a theoretical motivation for RN and SVM. It
should be clear that all the definitions and analysis above still hold for any hypothesis
space H, where we replace f0 with the minimizer of the expected risk in H, f̂l is
now the minimizer of the empirical risk in H, and h the VC-dimension of the loss
function V in H.

Let l be the number of training data. For a fixed ε > 0 such that l > 2/ε2,
let γ = 1

48ε, and consider, as before, a nested sequence of hypothesis spaces H1 ⊂
H2 ⊂ · · · ⊂ Hn(l,ε), where each hypothesis space Hi has Vγ-dimension finite and
larger than that of all previous sets, i.e., if hi is the Vγ-dimension of space Hi, then

13 Closed forms of G can be derived (see, for example, [2]) but we do not present them here for simplicity
of notation.
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h1 6 h2 6 · · · 6 hn(l,ε). For each element Hi of the structure consider the solution of
the learning problem to be

f̂i,l = arg min
f∈Hi

Iemp[f ; l]. (2.15)

Because of the way we define our structure the larger i is, the smaller the empirical
error of f̂i,l is (since we have more “flexibility” to fit our training data), but the larger
the right hand side of inequality (2.13) is. Using such a nested sequence of more and
more complex hypothesis spaces, this extended SRM learning technique consists of
finding the structure element Hn∗(l,ε) for which the tradeoff between empirical error
and the right hand side of (2.13) is optimal. One practical idea is to find numerically
for each Hi the “effective” εi so that the bound (2.13) is the same for all Hi, and then
choose f̂i,l for which the sum of the empirical risk and εi is minimized.

We conjecture that as l →∞, for appropriate choice of n(l, ε) with n(l, ε)→∞
as l→∞, the expected risk of the solution of the method converges in probability to
a value less than 2ε away from the minimum expected risk in H =

⋃∞
i=1 Hi. Notice

that we described an SRM method for a fixed ε. If the Vγ-dimension of Hi is finite
for every γ > 0, we can further modify the extended SRM method so that ε → 0
as l → ∞. We conjecture that if the target function f0 belongs to the closure of H,
then as l → ∞, with appropriate choices of ε, n(l, ε) and n∗(l, ε) the solution of this
SRM method can be proven (as before) to satisfy equation (2.4) in probability. Finding
appropriate forms of ε, n(l, ε) and n∗(l, ε) is an open theoretical problem (which we
believe to be a technical matter). Again, as in the case of “standard” SRM, in practice
l is finite so H =

⋃n(l,ε)
i=1 Hi is a small space and the solution of this method may have

expected risk much larger that the expected risk of the target function. Approximation
theory can be used to bound this difference [61].

The proposed method is difficult to implement in practice since it is difficult to
decide the optimal tradeoff between empirical error and the bound (2.13). If we had
constructive bounds on the deviation between the empirical and the expected risk like
that of theorem 2.7 then we could have a practical way of choosing the optimal element
of the structure. Unfortunately, existing bounds of that type [2,7] are not tight. So
the final choice of the element of the structure may be done in practice using other
techniques such as cross-validation [102].

2.4. Overview of our approach

In order to set the stage for the next two sections on regularization and Support
Vector Machines, we outline here how we can justify the proper use of the RN and the
SVM functionals (see (1.3)) in the framework of the SRM principles just described.

The basic idea is to define a structure in terms of a nested sequence of hypothesis
spaces H1 ⊂ H2 ⊂ · · · ⊂ Hn(l) with Hm being the set of functions f in the RKHS
with

‖f‖K 6 Am, (2.16)



14 T. Evgeniou et al. / Regularization Networks and Support Vector Machines

where Am is a monotonically increasing sequence of positive constants. Following
the SRM method outlined above, for each m we will minimize the empirical risk

1
l

l∑
i=1

V
(
yi, f (xi)

)
,

subject to the constraint (2.16). This in turn leads to using the Lagrange multiplier λm
and to minimizing

1
l

l∑
i=1

V
(
yi, f (xi)

)
+ λm

(
‖f‖2

K −A2
m

)
with respect to f and maximizing with respect to λm > 0 for each element of the
structure. We can then choose the optimal n∗(l) and the associated λ∗(l), and get the
optimal solution f̂n∗(l).

The solution we get using this method is clearly the same as the solution of

1
l

l∑
i=1

V
(
yi, f (xi)

)
+ λ∗(l)‖f‖2

K , (2.17)

where λ∗(l) is the optimal Lagrange multiplier corresponding to the optimal element
of the structure An∗(l). Notice that this approach is quite general. In particular, it can
be applied to classical L2 regularization, to SVM regression, and, as we will see, to
SVM classification with the appropriate V (·, ·).

In section 6 we will describe in detail this approach for the case that the ele-
ments of the structure are infinite dimensional RKHS. We have outlined this theoretical
method here so that the reader understands our motivation for reviewing in the next
two sections the approximation schemes resulting from the minimization of functionals
of the form of equation (2.17) for three specific choices of the loss function V :

• V (y, f (x)) = (y − f (x))2 for regularization,

• V (y, f (x)) = |y − f (x)|ε for SVM regression,

• V (y, f (x)) = |1− yf (x)|+ for SVM classification.

For SVM classification the loss functions:

• V (y, f (x)) = θ(1− yf (x)) (hard margin loss function), and

• V (y, f (x)) = θ(−yf (x)) (misclassification loss function)

will also be discussed. First we present an overview of RKHS which are the hypothesis
spaces we consider in the paper.
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3. Reproducing Kernel Hilbert Spaces: a brief overview

A Reproducing Kernel Hilbert Space (RKHS) [5] is a Hilbert spaceH of functions
defined over some bounded domain X ⊂ Rd with the property that, for each x ∈ X,
the evaluation functionals Fx defined as

Fx[f ] = f (x) ∀f ∈ H

are linear, bounded functionals. The boundedness means that there exists a U = Ux ∈
R+ such that ∣∣Fx[f ]

∣∣ =
∣∣f (x)

∣∣ 6 U ||f ||
for all f in the RKHS.

It can be proved [102] that to every RKHS H there corresponds a unique positive
definite function K(x, y) of two variables in X, called the reproducing kernel of H
(hence the terminology RKHS), that has the following reproducing property:

f (x) = 〈f (y),K(y, x)〉H ∀f ∈ H, (3.1)

where 〈·, ·〉H denotes the scalar product in H. The function K behaves in H as the
delta function does in L2, although L2 is not a RKHS (the functionals Fx are clearly
not bounded).

To make things clearer we sketch a way to construct a RKHS, which is relevant
to our paper. The mathematical details (such as the convergence or not of certain
series) can be found in the theory of integral equations [20,23,45].

Let us assume that we have a sequence of positive numbers λn and linearly
independent functions φn(x) such that they define a function K(x, y) in the following
way14:

K(x, y) ≡
∞∑
n=0

λnφn(x)φn(y), (3.2)

where the series is well defined (for example, it converges uniformly). A simple
calculation shows that the function K defined in equation (3.2) is positive definite.
Let us now take as our Hilbert space to be the set of functions of the form

f (x) =
∞∑
n=0

anφn(x) (3.3)

for any an ∈ R, and define the scalar product in our space to be〈 ∞∑
n=0

anφn(x),
∞∑
n=0

dnφn(x)

〉
H
≡
∞∑
n=0

andn
λn

. (3.4)

14 When working with complex functions φn(x) this formula should be replaced with K(x, y) ≡∑∞
n=0

λnφn(x)φ∗n(y).
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Assuming that all the evaluation functionals are bounded, it is now easy to check
that such an Hilbert space is a RKHS with reproducing kernel given by K(x, y). In
fact, we have

〈
f (y),K(y, x)

〉
H =

∞∑
n=0

anλnφn(x)
λn

=
∞∑
n=0

anφn(x) = f (x), (3.5)

hence equation (3.1) is satisfied.
Notice that when we have a finite number of φn, the λn can be arbitrary (finite)

numbers, since convergence is ensured. In particular they can all be equal to one.
Generally, it is easy to show [102] that whenever a function K of the form (3.2)

is available, it is possible to construct a RKHS as shown above. Vice versa, for any
RKHS there is a unique kernel K and corresponding λn, φn, that satisfy equation (3.2)
and for which equations (3.3)–(3.5) hold for all functions in the RKHS. Moreover,
equation (3.4) shows that the norm of the RKHS has the form

‖f‖2
K =

∞∑
n=0

a2
n

λn
. (3.6)

The φn consist a basis for the RKHS (not necessarily orthonormal), and the kernel K
is the “correlation” matrix associated with these basis functions. It is in fact well know
that there is a close relation between Gaussian processes and RKHS [40,58,72]. Wahba
[102] discusses in depth the relation between regularization, RKHS and correlation
functions of Gaussian processes. The choice of the φn defines a space of functions –
the functions that are spanned by the φn.

We also call the space {(φn(x))∞n=1, x ∈ X} the feature space induced by the ker-
nel K. The choice of the φn defines the feature space where the data x are “mapped”.
In this paper we refer to the dimensionality of the feature space as the dimensionality
of the RKHS. This is clearly equal to the number of basis elements φn, which does not
necessarily have to be infinite. For example, with K a Gaussian, the dimensionality
of the RKHS is infinite (φn(x) are the Fourier components ein·x), while when K is a
polynomial of degree k (K(x, y) = (1 + x · y)k – see section 4), the dimensionality of
the RKHS is finite, and all the infinite sums above are replaced with finite sums.

It is well known that expressions of the form (3.2) actually abound. In fact, it
follows from Mercer’s theorem [45] that any function K(x, y) which is the kernel of
a positive operator15 in L2(Ω) has an expansion of the form (3.2), in which the φi
and the λi are respectively the orthogonal eigenfunctions and the positive eigenvalues
of the operator corresponding to K. In [91] it is reported that the positivity of the
operator associated to K is equivalent to the statement that the kernel K is positive
definite, that is the matrix Kij = K(xi, xj) is positive definite for all choices of distinct
points xi ∈ X. Notice that a kernel K could have an expansion of the form (3.2) in

15 We remind the reader that positive definite operators in L2 are self-adjoint operators such that
〈Kf , f〉 > 0 for all f ∈ L2.
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which the φn are not necessarily its eigenfunctions. The only requirement is that the
φn are linearly independent but not necessarily orthogonal.

In the case that the space X has finite cardinality, the “functions” f are evaluated
only at a finite number of points x. If M is the cardinality of X, then the RKHS
becomes an M dimensional space where the functions f are basically M dimensional
vectors, the kernel K becomes an M ×M matrix, and the condition that makes it a
valid kernel is that it is a symmetric positive definite matrix (semi-definite if M is
larger than the dimensionality of the RKHS). Positive definite matrices are known to
be the ones which define dot products, i.e., fKfT > 0 for every f in the RKHS. The
space consists of all M dimensional vectors f with finite norm fKfT.

Summarizing, RKHS are Hilbert spaces where the dot product is defined using
a function K(x, y) which needs to be positive definite just like in the case that X has
finite cardinality. The elements of the RKHS are all functions f that have a finite norm
given by equation (3.6). Notice the equivalence of (a) choosing a specific RKHS H,
(b) choosing a set of φn and λn, and (c) choosing a reproducing kernel K. The last
one is the most natural for most applications.

Finally, it is useful to notice that the solutions of the methods we discuss in
this paper can be written both in the form (1.2), and in the form (3.3). Often in the
literature formulation (1.2) is called the dual form of f , while (3.3) is called the primal
form of f .

4. Regularization Networks

In this section we consider the approximation scheme that arises from the mini-
mization of the quadratic functional

min
f∈H

H[f ] =
1
l

l∑
i=1

(
yi − f (xi)

)2
+ λ‖f‖2

K (4.1)

for a fixed λ. Formulations like equation (4.1) are a special form of regularization
theory developed by Tikhonov, Ivanov [46,92] and others to solve ill-posed problems
and in particular to solve the problem of approximating the functional relation between
x and y given a finite number of examples D = {xi, yi}li=1. As we mentioned in
the previous sections our motivation in this paper is to use this formulation as an
approximate implementation of Vapnik’s SRM principle.

In classical regularization the data term is an L2 loss function for the empirical
risk, whereas the second term – called stabilizer – is usually written as a functional
Ω(f ) with certain properties [39,69,92]. Here we consider a special class of stabilizers,
that is the norm ‖f‖2

K in a RKHS induced by a symmetric, positive definite function
K(x, y). This choice allows us to develop a framework of regularization which in-
cludes most of the usual regularization schemes. The only significant omission in this
treatment – that we make here for simplicity – is the restriction on K to be sym-
metric positive definite so that the stabilizer is a norm. However, the theory can be
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Table 1
Some possible kernel functions. The first four are radial kernels. The multiquadric and thin
plate splines are positive semidefinite and thus require an extension of the simple RKHS
theory of this paper. The last three kernels were proposed by Vapnik [96], originally for
SVM. The last two kernels are one-dimensional: multidimensional kernels can be built by
tensor products of one-dimensional ones. The functions Bn are piecewise polynomials of

degree n, whose exact definition can be found in [85].

Kernel function Regularization Network

K(x− y) = exp(−‖x− y‖2) Gaussian RBF
K(x− y) = (‖x− y‖2 + c2)−1/2 Inverse multiquadric
K(x− y) = (‖x− y‖2 + c2)1/2 Multiquadric
K(x− y) = ‖x− y‖2n+1 Thin plate splines
K(x− y) = ‖x− y‖2n ln(‖x− y‖)
K(x, y) = tanh(x · y− θ) (only for some values of θ)

Multi-Layer Perceptron
K(x, y) = (1 + x · y)d Polynomial of degree d
K(x, y) = B2n+1(x− y) B-splines

K(x, y) =
sin(d+ 1/2)(x − y)

sin((x− y)/2)
Trigonometric polynomial of degree d

extended without problems to the case in which K is positive semidefinite, in which
case the stabilizer is a semi-norm [31,33,56,102]. This approach was also sketched
in [90].

The stabilizer in equation (4.1) effectively constrains f to be in the RKHS defined
by K. It is possible to show (see for example [39,69]) that the function that minimizes
the functional (4.1) has the form

f (x) =
l∑
i=1

ciK(x, xi), (4.2)

where the coefficients ci depend on the data and satisfy the following linear system of
equations:

(K + λI)c = y, (4.3)

where I is the identity matrix, and we have defined

(y)i = yi, (c)i = ci, (K)ij = K(xi, xj).

It is remarkable that the solution of the more general case of

min
f∈H

H[f ] =
1
l

l∑
i=1

V
(
yi − f (xi)

)
+ λ‖f‖2

K , (4.4)

where the function V is any differentiable function, is quite similar: the solution has
exactly the same general form of (4.2), though the coefficients cannot be found any
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longer by solving a linear system of equations as in equation (4.3) [37,40,90]. For a
proof see [38].

The approximation scheme of equation (4.2) has a simple interpretation in terms
of a network with one layer of hidden units [39,71]. Using different kernels we get
various RNs. A short list of examples is given in table 1.

When the kernel K is positive semidefinite, there is a subspace of functions f
which have norm ‖f‖2

K equal to zero. They form the null space of the functional
‖f‖2

K and in this case the minimizer of (4.1) has the form [102]

f (x) =
l∑
i=1

ciK(x, xi) +
k∑

α=1

bαψα(x), (4.5)

where {ψα}kα=1 is a basis in the null space of the stabilizer, which in most cases
is a set of polynomials, and, therefore, will be referred to as the “polynomial term”
in equation (4.5). The coefficients bα and ci depend on the data. For the classical
regularization case of equation (4.1), the coefficients of equation (4.5) satisfy the
following linear system:

(K + λI)c + ΨTb = y, (4.6)

Ψc = 0, (4.7)

where I is the identity matrix, and we have defined

(y)i = yi, (c)i = ci, (b)i = bi,

(K)ij = K(xi, xj), (Ψ)αi = ψα(xi).

When the kernel is positive definite, as in the case of the Gaussian, the null space of
the stabilizer is empty. However, it is often convenient to redefine the kernel and the
norm induced by it so that the induced RKHS contains only zero-mean functions, that
is, functions f1(x) s.t.

∫
X f1(x) dx = 0. In the case of a radial kernel K, for instance,

this amounts to considering a new kernel

K ′(x, y) = K(x, y)− λ0

without the zeroth order Fourier component, and a norm

‖f‖2
K′ =

∞∑
n=1

a2
n

λn
. (4.8)

The null space induced by the new K ′ is the space of constant functions. Then the
minimizer of the corresponding functional (4.1) has the form

f (x) =
l∑
i=1

ciK
′(x, xi) + b, (4.9)
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with the coefficients satisfying equations (4.6) and (4.7), that respectively become(
K ′ + λI

)
c + 1b= (K − λ0I + λI)c + 1b

=
(
K + (λ− λ0)I

)
c + 1b = y, (4.10)

l∑
i=1

ci = 0. (4.11)

Equations (4.9) and (4.11) imply that the minimizer of (4.1) is of the form

f (x) =
l∑
i=1

ciK
′(x, xi) + b =

l∑
i=1

ci
(
K(x, xi)− λ0

)
+ b =

l∑
i=1

ciK(x, xi) + b. (4.12)

Thus, we can effectively use a positive definite K and the constant b, since the only
change in equation (4.10) just amounts to the use of a different λ. Choosing to use a
non-zero b effectively means choosing a different feature space and a different stabilizer
from the usual case of equation (4.1): the constant feature is not considered in the
RKHS norm and therefore is not “penalized”. This choice is often quite reasonable,
since in many regression and, especially, classification problems, shifts by a constant
in f should not be penalized.

In summary, the argument of this section shows that using a RN of the form (4.12)
(for a certain class of kernels K) is equivalent to minimizing functionals such as (4.1)
or (4.4). The choice of K is equivalent to the choice of a corresponding RKHS
and leads to various classical learning techniques such as RBF networks. We discuss
connections between regularization and other techniques in sections 4.2 and 4.3.

Notice that in the framework we use here the kernels K are not required to
be radial or even shift-invariant. Regularization techniques used to solve supervised
learning problems [39,69] were typically used with shift invariant stabilizers (tensor
product and additive stabilizers are exceptions, see [39]). We now turn to such kernels.

4.1. Radial Basis Functions

Let us consider a special case of the kernel K of the RKHS, which is the standard
case in several papers and books on regularization [39,70,102]: the case in which K
is shift invariant, that is K(x, y) = K(x − y) and the even more special case of a
radial kernel K(x, y) = K(||x − y||). Section 3 implies that a radial positive definite
K defines a RKHS in which the “features” φn are Fourier components, that is,

K(x, y) ≡
∞∑
n=0

λnφn(x)φn(y) ≡
∞∑
n=0

λnei2πn·xe−i2πn·y. (4.13)
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Thus any positive definite radial kernel defines a RKHS over [0, 1] with a scalar product
of the form

〈f , g〉H ≡
∞∑
n=0

f̃ (n)g̃∗(n)
λn

, (4.14)

where f̃ is the Fourier transform of f . The RKHS becomes simply the subspace of
L2([0, 1]d) of the functions such that

‖f‖2
K =

∞∑
n=1

|f̃ (n)|2
λn

< +∞. (4.15)

Functionals of the form (4.15) are known to be smoothness functionals. In fact,
the rate of decrease to zero of the Fourier transform of the kernel will control the
smoothness property of the function in the RKHS. For radial kernels the minimizer of
equation (4.1) becomes

f (x) =
l∑
i=1

ciK
(
‖x− xi‖

)
+ b (4.16)

and the corresponding RN is a Radial Basis Function Network. Thus Radial Basis
Function networks are a special case of RN [39,69].

In fact, all translation-invariant stabilizers K(x, xi) = K(x − xi) correspond to
RKHSs where the basis functions φn are Fourier eigenfunctions and only differ in
the spectrum of the eigenvalues (for a Gaussian stabilizer the spectrum is Gaussian,
that is, λn = Ae(−n2/2) (for σ = 1)). For example, if λn = 0 for all n > n0, the
corresponding RKHS consists of all band-limited functions, that is, functions with zero
Fourier components at frequencies higher than n0

16. Generally λn are such that they
decrease as n increases, therefore restricting the class of functions to be functions with
decreasing high frequency Fourier components.

In classical regularization with translation invariant stabilizers and associated
kernels, the common experience, often reported in the literature, is that the form of the
kernel does not matter much. We conjecture that this may be because all translation
invariant K induce the same type of φn features – the Fourier basis functions.

4.2. Regularization, generalized splines and kernel smoothers

A number of approximation and learning techniques can be studied in the frame-
work of regularization theory and RKHS. For instance, starting from a reproducing
kernel it is easy [5] to construct kernels that correspond to tensor products of the
original RKHS; it is also easy to construct the additive sum of several RKHS in terms
of a reproducing kernel.

16 The simplest K is then K(x, y) = sinc(x− y), or kernels that are convoluted with it.
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• Tensor product splines: In the particular case that the kernel is of the form

K(x, y) =
d∏
j=1

k
(
xj , yj

)
,

where xj is the jth coordinate of vector x and k is a positive definite function with
one-dimensional input vectors, the solution of the regularization problem becomes

f (x) =
∑
i

ci

d∏
j=1

k
(
xji ,x

j
)
.

Therefore, we can get tensor product splines by choosing kernels of the form
above [5].

• Additive splines: In the particular case that the kernel is of the form

K(x, y) =
d∑
j=1

k
(
xj , yj

)
,

where xj is the jth coordinate of vector x and k is a positive definite function with
one-dimensional input vectors, the solution of the regularization problem becomes

f (x) =
∑
i

ci

(
d∑
j=1

k
(
xji ,x

j
))

=
d∑
j=1

(∑
i

cik
(
xji ,x

j
))

=
d∑
j=1

fj
(
xj
)
.

So, in this particular case we get the class of additive approximation schemes of
the form

f (x) =
d∑
j=1

fj
(
xj
)
.

A more extensive discussion on relations between known approximation methods and
regularization can be found in [39].

4.3. Dual representation of Regularization Networks

Every RN can be written as

f (x) = c ·K(x), (4.17)

where K(x) is the vector of functions such that (K(x))i = K(x, xi). Since the coeffi-
cients c satisfy the equation (4.3), equation (4.17) becomes

f (x) = (K + λI)−1y ·K(x).
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We can rewrite this expression as

f (x) =
l∑
i=1

yibi(x) = y · b(x), (4.18)

in which the vector b(x) of basis functions is defined as

b(x) = (K + λI)−1K(x) (4.19)

and now depends on all the data points and on the regularization parameter λ. The
representation (4.18) of the solution of the approximation problem is known as the
dual17 of equation (4.17), and the basis functions bi(x) are called the equivalent kernels,
because of the similarity with the kernel smoothing technique [41,43,88]. Notice that,
while in equation (4.17) the difficult part is the computation of coefficients ci, the kernel
function K(x, xi) being predefined, in the dual representation (4.18) the difficult part
is the computation of the basis function bi(x), the coefficients of the expansion being
explicitly given by the yi.

As observed in [39], the dual representation of a RN shows clearly how careful
one should be in distinguishing between local vs. global approximation techniques. In
fact, we expect (see [88] for the 1-D case) that in most cases the kernels bi(x) decrease
with the distance of the data points xi from the evaluation point, so that only the
neighboring data affect the estimate of the function at x, providing therefore a “local”
approximation scheme. Even if the original kernel K is not “local”, like the absolute
value |x| in the one-dimensional case or the multiquadric K(x) =

√
1 + ‖x‖2, the basis

functions bi(x) are bell shaped, local functions, whose locality will depend on the choice
of the kernel K, on the density of data points, and on the regularization parameter λ.
This shows that apparently “global” approximation schemes can be regarded as local,
memory-based techniques (see equation (4.18)) [59].

4.4. From regression to classification

So far we only considered the case that the unknown function can take any real
values, specifically the case of regression. In the particular case that the unknown
function takes only two values, i.e., −1 and 1, we have the problem of binary pattern
classification, i.e., the case where we are given data that belong to one of two classes
(classes −1 and 1) and we want to find a function that separates these classes. It
can be shown [28] that, if V in equation (4.4) is (y − f (x))2, and if K defines a
finite-dimensional RKHS, then the minimizer of the equation

H[f ] =
1
l

l∑
i=1

(
f (xi)− yi

)2
+ λ‖f‖2

K , (4.20)

17 Notice that this “duality” is different from the one mentioned at the end of section 3.
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for λ → 0 approaches asymptotically the function in the RKHS that is closest in the
L2-norm to the regression function:

f0(x) = P (y = 1 | x)− P (y = −1 | x). (4.21)

The optimal Bayes rule classifier is given by thresholding the regression function,
i.e., by sign(f0(x)). Notice that in the case of infinite dimensional RKHS asymptotic
results ensuring consistency are available (see [27, theorem 29.8]) but depend on
several conditions that are not automatically satisfied in the case we are considering.
The Bayes classifier is the best classifier, given the correct probability distribution P .
However, approximating function (4.21) in the RKHS in L2 does not necessarily imply
that we find the best approximation to the Bayes classifier. For classification, only the
sign of the regression function matters and not the exact value of it. Notice that an
approximation of the regression function using a mean square error criterion places
more emphasis on the most probable data points and not on the most “important” ones
which are the ones near the separating boundary.

In the next section we will study Vapnik’s more natural approach to the problem
of classification that is based on choosing a loss function V different from the square
error. This approach leads to solutions that emphasize data points near the separating
surface.

5. Support Vector Machines

In this section we discuss the technique of Support Vector Machines (SVM) for
Regression (SVMR) [95,96] in terms of the SVM functional. We will characterize the
form of the solution and then show that SVM for binary pattern classification can be
derived as a special case of the regression formulation.

5.1. SVM in RKHS

Once again the problem is to learn a functional relation between x and y given
a finite number of examples D = {xi, yi}li=1.

The method of SVMR [96] corresponds to the following functional:

H[f ] =
1
l

l∑
i=1

∣∣yi − f (xi)
∣∣
ε

+ λ‖f‖2
K , (5.1)

which is a special case of equation (4.4) and where

V (x) = |x|ε ≡
{

0 if |x| < ε,
|x| − ε otherwise,

(5.2)

is the ε-Insensitive Loss Function (ILF) (also denoted with Lε). Note that the ILF
assigns zero cost to errors smaller then ε. In other words, for the cost function | · |ε
any function closer than ε to the data points is a perfect interpolant. We can think of
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the parameter ε as the resolution at which we want to look at the data. For this reason
we expect that the larger ε is, the simpler the representation will be. We will come
back to this point in section 8.

The minimizer of H in the RKHS H defined by the kernel K has the general
form given by equation (4.12), that is,

f (x) =
l∑
i=1

ciK(xi, x) + b, (5.3)

where we can include the constant b for the same reasons discussed in section 4.
In order to find the solution of SVM we have to minimize functional (5.1) (with V

given by equation (5.2)) with respect to f . Since it is difficult to deal with the function
V (x) = |x|ε, the above problem is replaced by the following equivalent problem (by
equivalent we mean that the same function minimizes both functionals), in which an
additional set of variables is introduced:

Problem 5.1.

min
f ,ξ,xi∗

Φ
(
f , ξ, ξ∗

)
=
C

l

l∑
i=1

(
ξi + ξ∗i

)
+

1
2
‖f‖2

K (5.4)

subject to the constraints

f (xi)− yi 6 ε+ ξi, i = 1, . . . , l,
yi − f (xi) 6 ε+ ξ∗i , i = 1, . . . , l,
ξi, ξ∗i > 0, i = 1, . . . , l.

(5.5)

The parameter C in (5.4) has been introduced in order to be consistent with the
standard SVM notations [96]. Note that λ in equation (5.1) corresponds to 1/(2C).
The equivalence is established just noticing that in problem 5.1 a (linear) penalty is
paid only when the absolute value of the error exceeds ε (which correspond to Vapnik’s
ILF). Notice that if either of the two top constraints is satisfied with some non-zero ξi
(or ξ∗i ), the other is automatically satisfied with a zero value for ξ∗i (or ξi).

Problem 5.1 can be solved through the technique of Lagrange multipliers. For
details, see [96]. The result is that the function which solves problem 5.1 can be
written as

f (x) =
l∑
i=1

(
α∗i − αi

)
K(xi, x) + b,

where α∗i and αi are the solution of the following QP-problem:
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Problem 5.2.

min
α,α∗
W
(
α,α∗

)
= ε

l∑
i=1

(
α∗i + αi

)
−

l∑
i=1

yi
(
α∗i − αi

)
+

1
2

l∑
i,j=1

(
α∗i − αi

)(
α∗j − αj

)
K(xi, xj),

subject to the constraints

l∑
i=1

(
α∗i − αi

)
= 0, 0 6 α∗i ,αi 6

C

l
, i = 1, . . . , l.

The solutions of problems 5.1 and 5.2 are related by the Kuhn–Tucker conditions:

αi
(
f (xi)− yi − ε− ξi

)
= 0, i = 1, . . . , l, (5.6)

α∗i
(
yi − f (xi)− ε− ξ∗i

)
= 0, i = 1, . . . , l, (5.7)(

C

l
− αi

)
ξi = 0, i = 1, . . . , l, (5.8)(

C

l
− α∗i

)
ξ∗i = 0, i = 1, . . . , l. (5.9)

The input data points xi for which αi or α∗i are different from zero are called support
vectors (SVs). Observe that αi and α∗i cannot be simultaneously different from zero,
so that the constraint αiα∗i = 0 holds true. Any of the SVs for which 0 < αj < C/l
(and, therefore, ξj = 0) can be used to compute the parameter b. In fact, in this case
it follows from the Kuhn–Tucker conditions that

f (xj) =
l∑
i=1

(
α∗i − αi

)
K(xi, xj) + b = yj + ε,

from which b can be computed. The SVs are those data points xi at which the error
is either greater or equal to ε18. Points at which the error is smaller than ε are never
support vectors, and do not enter in the determination of the solution. A consequence
of this fact is that if the SVM were run again on the new data set consisting of only
the SVs the same solution would be found.

Finally, observe that if we call ci = α∗i − αi, we recover equation (5.3). With
respect to the new variable ci problem 5.2 becomes:

Problem 5.3.

min
c
E[c] =

1
2

l∑
i,j=1

cicjK(xi, xj)−
l∑
i=1

ciyi + ε
l∑
i=1

|ci|

18 In degenerate cases, however, it can happen that points whose error is equal to ε are not SVs.
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subject to the constraints

l∑
i=1

ci = 0, −C
l
6 ci 6

C

l
, i = 1, . . . , l.

This different formulation of SVM will be useful in section 8 when we will
describe the relation between SVM and sparse approximation techniques.

5.2. From regression to classification

In the previous section we discussed the connection between regression and clas-
sification in the framework of regularization. In this section, after stating the formu-
lation of SVM for binary pattern classification (SVMC) as developed by Cortes and
Vapnik [22], we discuss a connection between SVMC and SVMR. We will not discuss
the theory of SVMC here; we refer the reader to [96]. We point out that the SVM
technique has first been proposed for binary pattern classification problems and then
extended to the general regression problem [95]. Here our primary focus is regression
and we consider classification as a special case of regression.

SVMC can be formulated as the problem of minimizing:

H(f ) =
1
l

l∑
i

∣∣1− yif (xi)
∣∣
+

+
1

2C
‖f‖2

K , (5.10)

which is again of the form (1.3). Using the fact that yi ∈ {−1, +1} it is easy to see that
our formulation (equation (5.10)) is equivalent to the following quadratic programming
problem, originally proposed by Cortes and Vapnik [22]:

Problem 5.4.

min
f∈H,ξ

Φ(f , ξ) =
C

l

l∑
i=1

ξi +
1
2
‖f‖2

K

subject to the constraints

yif (xi) > 1− ξi, i = 1, . . . , l,
(5.11)

ξi > 0, i = 1, . . . , l.

The solution of this problem is again of the form

f (x) =
l∑
i=1

αiK(xi, x) + b, (5.12)

where it turns out that 0 6 αi 6 C/l. The input data points xi for which αi is different
from zero are called, as in the case of regression, support vectors (SVs). It is often
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possible to write the solution f (x) as a linear combination of SVs in a number of
different ways (for example, in case that the feature space induced by the kernel K
has dimensionality lower than the number of SVs). The SVs that appear in all these
linear combinations are called essential support vectors.

Roughly speaking, the motivation for problem 5.4 is to minimize the empirical
error measured by

∑l
i=1 ξi

19 while controlling capacity measured in terms of the norm
of f in the RKHS. In fact, the norm of f is related to the notion of margin, an important
idea for SVMC for which we refer the reader to [15,96].

We now address the following question: what happens if we apply the SVMR
formulation given by problem 5.1 to the binary pattern classification case, i.e., the case
where yi take values {−1, 1}, treating classification as a regression on binary data?

Notice that in problem 5.1 each example has to satisfy two inequalities (which
come out of using the ILF), while in problem 5.4 each example has to satisfy one
inequality. It is possible to show that for a given constant C in problem 5.4, there
exist C and ε in problem 5.1 such that the solutions of the two problems are the same,
up to a constant factor. This is summarized in the following theorem:

Theorem 5.5. Suppose the classification problem 5.4 is solved with parameter C, and
the optimal solution is found to be f . Then, there exists a value a ∈ (0, 1) such that
for ∀ε ∈ [a, 1), if the regression problem 5.1 is solved with parameter (1 − ε)C, the
optimal solution will be (1− ε)f .

We refer to [76] for the proof. A direct implication of this result is that one can
solve any SVMC problem through the SVMR formulation. It is an open question what
theoretical implications theorem 5.5 may have about SVMC and SVMR. In particular,
in section 6 we will discuss some recent theoretical results on SVMC that have not
yet been extended to SVMR. It is possible that theorem 5.5 may help to extend them
to SVMR.

6. SRM for RNs and SVMs

At the end of section 2 we outlined how one should implement both RN and
SVM according to SRM. To use the standard SRM method we first need to know
the VC-dimension of the hypothesis spaces we use. In sections 4 and 5 we saw that
both RN and SVM use as hypothesis spaces sets of bounded functions f in a RKHS
with ‖f‖K bounded (i.e., ‖f‖K 6 A), where k is the kernel of the RKHS. Thus, in
order to use the standard SRM method outlined in section 2 we need to know the
VC-dimension of such spaces under the loss functions of RN and SVM.

19 As we mentioned in section 2, for binary pattern classification the empirical error is defined as a sum
of binary numbers which in problem (5.4) would correspond to

∑l

i=1
θ(ξi). However, in such a case

the minimization problem becomes computationally intractable. This is why in practice in the cost
functional Φ(f , ξ) we approximate θ(ξi) with ξi. We discuss this further in section 6.
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Unfortunately, it can be shown that when the loss function V is (y − f (x))2

(L2) and also when it is |yi − f (xi)|ε (Lε), the VC-dimension of V (y, f (x)) with f
in HA = {f : ||f ||K 6 A} does not depend on A, and is infinite if the RKHS is
infinite dimensional. More precisely, we have the following theorem (for a proof see,
for example, [36,103]):

Theorem 6.1. Let N be the dimensionality of a RKHS R. For both the L2 and the
ε-insensitive loss function V , the VC-dimension of V in the space HA = {f ∈ R:
‖f‖K 6 A} is O(N ), independently of A. Moreover, ifN is infinite, the VC-dimension
is infinite for any positive A.

It is thus impossible to use SRM with this kind of hypothesis spaces: in the
case of finite dimensional RKHS, the RKHS norm of f cannot be used to define a
structure of spaces with different VC-dimensions, and in the (typical) case that the
dimensionality of the RKHS is infinite, it is not even possible to use bound (2.8). So
the VC-dimension cannot be used directly either for RN or for SVMR.

On the other hand, we can still use the Vγ-dimension and the extended SRM
method outlined in section 2. Again we need to know the Vγ-dimension of our loss
function V in the space HA defined above. In the typical case that the input space
X is bounded, the Vγ-dimension depends on A and is not infinite in the case of
infinite dimensional RKHS. More precisely, the following theorem holds (for a proof
see [36]):

Theorem 6.2. Let N be the dimensionality of a RKHS R with kernel K. Assume our
input space X is bounded and let R be the radius of the smallest ball B containing the
data x in the feature space induced by kernel K. The Vγ-dimension h for regression
using L2 or Lε loss functions for hypothesis spaces HA = {f ∈ R | ‖f‖K 6 A} and
y bounded, is finite for ∀γ > 0, with

h 6 O

(
min

(
N ,

(R2 + 1)(A2 + 1)
γ2

))
.

Notice that for fixed γ and fixed radius of the data the only variable that controls
the Vγ-dimension is the upper bound on the RKHS norm of the functions, namely A.
Moreover, the Vγ-dimension is finite for ∀γ > 0; therefore, according to theorem 2.10,
ERM uniformly converges in HA for any A <∞, both for RN and for SVMR. Thus
both RNs and SVMR are consistent in HA for any A <∞. Theoretically, we can use
the extended SRM method with a sequence of hypothesis spaces HA each defined for
different As. To repeat, for a fixed γ > 0 (we can let γ go to 0 as l → ∞) we first
define a structure H1 ⊂ H2 ⊂ · · · ⊂ Hn(l) where Hm is the set of bounded functions
f in a RKHS with ||f ||K 6 Am, Am <∞, and the numbers Am form an increasing
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sequence. Then we minimize the empirical risk in each Hm by solving the problem

minimize
1
l

l∑
i=1

V
(
yi, f (xi)

)
subject to ‖f‖K 6 Am. (6.1)

To solve this minimization problem we minimize

1
l

l∑
i=1

V
(
yi, f (xi)

)
+ λm

(
‖f‖2

K −A2
m

)
(6.2)

with respect to f and maximize with respect to the Lagrange multiplier λm. If fm is
the solution of this problem, at the end we choose the optimal fn∗(l) in Fn∗(l) with the
associated λn∗(l), where optimality is decided based on a tradeoff between empirical
error and the bound (2.13) for the fixed γ (which, as we mentioned, can approach
zero). In the case of RN, V is the L2 loss function, whereas in the case of SVMR it
is the ε-insensitive loss function.

In practice it is difficult to implement the extended SRM for two main reasons.
First, as we discussed in section 2, SRM using the Vγ-dimension is practically diffi-
cult because we do not have tight bounds to use in order to pick the optimal Fn∗(l)
(combining theorems 6 and 2.11, bounds on the expected risk of RN and SVMR ma-
chines of the form (6.1) can be derived, but these bounds are not practically useful).
Second, even if we could make a choice of Fn∗(l), it is computationally difficult to
implement SRM since (6.1) is a constrained minimization problem one with non-linear
constraints, and solving such a problem for a number of spaces Hm can be computa-
tionally difficult. So implementing SRM using the Vγ-dimension of nested subspaces
of a RKHS is practically a very difficult problem.

On the other hand, if we had the optimal Lagrange multiplier λn∗(l), we could
simply solve the unconstrained minimization problem

1
l

l∑
i=1

V
(
yi, f (xi)

)
+ λn∗(l)‖f‖2

K (6.3)

both for RN and for SVMR. This is exactly the problem we solve in practice, as we
described in sections 4 and 5. Since the value λn∗(l) is not known in practice, we can
only “implement” the extended SRM approximately by minimizing (6.3) with various
values of λ and then picking the best λ using techniques such as cross-validation
[1,49,100,101], Generalized Cross Validation, Finite Prediction Error and the MDL
criteria (see [96] for a review and comparison).

Summarizing, both the RN and the SVMR methods discussed in sections 4 and 5
can be seen as approximations of the extended SRM method using the Vγ-dimension,
with nested hypothesis spaces of the form HA = {f ∈ R: ‖f‖K 6 A}, R being a
RKHS defined by kernel K. For both RN and SVMR the Vγ-dimension of the loss
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function V in HA is finite for ∀γ > 0, so the ERM method uniformly converges in
HA for any A <∞, and we can use the extended SRM method outlined in section 2.

6.1. SRM for SVM classification

It is interesting to notice that the same analysis can be used for the problem of
classification. In this case the following theorem holds [35]:

Theorem 6.3. Let N be the dimensionality of a RKHS R with kernel K. Assume our
input space X is bounded and let R be the radius of the sphere where our data x belong
to, in the feature space induced by kernel K. The Vγ-dimension of the soft margin loss
function |1 − yf (x)|+ in HA = {f ∈ R: ||f ||K 6 A} is 6 O(min(N ,R2A2/γ2)). In
the case that N is infinite the Vγ-dimension becomes 6 O(R2A2/γ2), which is finite
for ∀γ > 0.

This theorem, combined with the theorems on Vγ-dimension summarized in sec-
tion 2, can be used for a distribution independent analysis of SVMC (of the form (6.1))
like that of SVMR and RN. However, a direct application of theorems 6.3 and 2.11
leads to a bound on the expected soft margin error of the SVMC solution, instead of
a more interesting bound on the expected misclassification error. We can bound the
expected misclassification error as follows.

Using theorem 2.11 with the soft margin loss function we can get a bound on the
expected soft margin loss in terms of the empirical one (the

∑l
i=1 ξi of problem 5.4)

and the Vγ-dimension given by theorem 6.3. In particular, theorem 2.11 implies

Pr
{

sup
f∈HA

∣∣Iemp[f ; l]− I[f ]
∣∣ > ε

}
6 G(ε,m,hγ ), (6.4)

where both the expected and the empirical errors are measured using the soft margin
loss function, and hγ is the Vγ-dimension of theorem 6.3 for γ = αε and α as in
theorem 2.11. On the other hand, θ(−yf (x)) 6 |1−yf (x)|+ for ∀(x, y), which implies
that the expected misclassification error is less than the expected soft margin error.
Inequality (6.4) implies that (uniformly) for all f ∈ HA

Pr
{
I[f ] > ε+ Iemp[f ; l]

}
6 G(ε,m,hγ), (6.5)

Notice that (6.5) is different from existing bounds that use the empirical hard
margin (θ(1 − yf (x))) error [8]. It is similar in spirit to bounds in [87] where the∑l

i=1 ξ
2
i is used20. On the other hand, it can be shown [35] that the Vγ-dimension for

loss functions of the form |1− yf (x)|σ+ is of the form O(R2A2/γ2/σ) for ∀0 < σ < 1.
Thus, using the same approach outlined above for the soft margin, we can get a bound
on the misclassification error of SVMC in terms of

∑l
i=1(ξi)σ, which, for σ near 0, is

20 The
∑l

i=1
ξi can be very different from the hard margin (or the misclassification) error. This may

lead to various pathological situations (see, for example, [80]).
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close to the margin error used in [8] (for more information we refer the reader to [35]).
It is important to point out that bounds like (6.5) hold only for the machines of the form
(6.1), and not for the machines of the form (1.3) typically used in practice [35]. This
is unlike the bound in [8] which holds for machines of the form (6.1) and is derived
using the theoretical results of [6] where a type of “continuous” SRM (for example,
for a structure of hypothesis spaces defined through the continuous parameter A of
(6.1)) is studied21.

In the case of classification the difficulty is the minimization of the empirical
misclassification error. Notice that SVMC does not minimize the misclassification
error, and instead minimizes the empirical error using the soft margin loss function.
One can use the SRM method with the soft margin loss function (1.6), in which case
minimizing the empirical risk is possible. The SRM method with the soft margin loss
function would be consistent, but the misclassification error of the solution may not be
minimal. It is unclear whether SVMC is consistent in terms of misclassification error.
In fact the Vγ-dimension of the misclassification loss function (which is the same as
the VC-dimension – see section 2) is known to be equal to the dimensionality of the
RKHS plus one [96]. This implies that, as discussed at the beginning of this section,
it cannot be used to study the expected misclassification error of SVMC in terms of
the empirical one.

6.1.1. Distribution dependent bounds for SVMC
We close this section with a brief reference to a recent distribution dependent

result on the generalization error of SVMC. This result does not use the Vγ- or VC-
dimensions, which, as we mentioned in section 2, are used only for distribution inde-
pendent analysis. It also leads to bounds on the performance of SVMC that (unlike
the distribution independent ones) can be useful in practice22.

For a given training set of size l, let us define SVl to be the number of essential
support vectors of SVMC (as we defined them in section 5 – see equation (5.12)). Let
Rl be the radius of the smallest hypersphere in the feature space induced by kernel
K containing all essential SVs, ‖f‖2

K (l) the norm of the solution of SVMC, and
ρ(l) = 1/‖f‖2

K (l) the margin. Then for a fixed kernel and for a fixed value of the
SVMC parameter C the following theorem holds:

Theorem 6.4 (Vapnik [96]). The expected misclassification risk of the SVM trained
on m data points sampled from X × Y according to a probability distribution P (x, y)
is bounded by

E

{
min(SVl+1,R2

l+1/ρ(l + 1))

l + 1

}
where the expectation E is taken over P (x, y).

21 All these bounds are not tight enough in practice.
22 Further distribution dependent results have been derived recently – see [16,34,47].
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This theorem can also be used to justify the current formulation of SVMC, since
minimizing ||f ||2K (l) affects the bound of theorem 6.4. It is an open question whether
the bound of 6.4 can be used to construct learning machines that are better than
current SVM. The theorem suggests that a learning machine should, instead of only
minimizing ||f ||2K , minimize min(SVl,R2

l+1/ρ(l + 1)). Finally, it is an open question
whether similar results exist for the case of SVMR. As we mentioned in section 5,
the connection between SVMC and SVMR outlined in that section may suggest how
to extend such results to SVMR. The problem of finding better distribution dependent
results on the generalization capabilities of SVM is a topic of current research which
may lead to better learning machines.

7. A Bayesian interpretation of regularization and SRM

7.1. Maximum a posteriori interpretation of regularization

It is well known that a variational principle of the type of equation (1.1) can be
derived not only in the context of functional analysis [92], but also in a probabilistic
framework [11,51,58,73,100,102]. In this section we illustrate this connection for both
RN and SVM, in the setting of RKHS.

Consider the classical regularization case

min
f∈H

H[f ] =
1
l

l∑
i=1

(
yi − f (xi)

)2
+ λ‖f‖2

K . (7.1)

Following Girosi et al. [39] let us define:

1. Dl = {(xi, yi)} for i = 1, . . . , l to be the set of training examples, as in the
previous sections.

2. P[f | Dl] as the conditional probability of the function f given the examples Dl.

3. P[Dl | f ] as the conditional probability of Dl given f . If the function underlying
the data is f , this is the probability that by random sampling the function f at
the sites {xi}li=1 the set of measurement {yi}li=1 is obtained. This is therefore a
model of the noise.

4. P[f ] as the a priori probability of the random field f . This embodies our a
priori knowledge of the function, and can be used to impose constraints on the
model, assigning significant probability only to those functions that satisfy those
constraints.

Assuming that the probability distributions P[Dl | f ] and P[f ] are known, the
posterior distribution P[f | Dl] can now be computed by applying the Bayes rule:

P[f | |Dl] ∝ P[Dl | f ]P[f ]. (7.2)
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If the noise is normally distributed with variance σ, then the probability P[Dl | f ] can
be written as

P[Dl | f ] ∝ e−(1/(2σ2))
∑l

i=1
(yi−f (xi))2

.

For now let us write informally the prior probability P[f ] as

P[f ] ∝ e−‖f‖
2
K. (7.3)

Following the Bayes rule (7.2) the a posteriori probability of f is written as

P[f |Dl] ∝ e−[(1/(2σ2))
∑l

i=1
(yi−f (xi))2+‖f‖2

K ]. (7.4)

One of the several possible estimates [58] of the function f from the probability
distribution (7.4) is the so called MAP (Maximum A Posteriori) estimate, that con-
siders the function that maximizes the a posteriori probability P[f |Dl], and therefore
minimizes the exponent in equation (7.4). The MAP estimate of f is, therefore, the
minimizer of the functional

1
l

l∑
i=1

(
yi − f (xi)

)2
+

1
l
α‖f‖2

K ,

where α is the a priori defined constant 2σ2, that is,

1
l

l∑
i=1

(
yi − f (xi)

)2
+ λ̃‖f‖2

K ,

where λ̃ = α/l. This functional is the same as that of equation (7.1), but here it is
important to notice that λ(l) = α/l. As noticed by Girosi et al. [39], functionals of
the type (7.3) are common in statistical physics [67], where the stabilizer (here ‖f‖2

K)
plays the role of an energy functional. As we will see later, the RKHS setting we use
in this paper makes clear that the correlation function of the physical system described
by ‖f‖2

K is the kernel K(x, y)23.
Thus in the standard MAP interpretation of RN the data term is a model of the

noise and the stabilizer is a prior on the regression function f . The informal argument
outlined above can be made formally precise in the setting of this paper in which the

23 As observed in [39,69] prior probabilities can also be seen as a measure of complexity, assigning high
complexity to the functions with small probability. This is consistent with the Minimum Description
Length (MDL) principle proposed by Rissanen [81] to measure the complexity of a hypothesis in
terms of the bit length needed to encode it. The MAP estimate mentioned above is closely related
to the MDL principle: the hypothesis f which for given Dl can be described in the most compact
way is chosen as the “best” hypothesis. Similar ideas have been explored by others (see [95,96] for a
summary).
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stabilizer is a norm in a RKHS (see also [102]). To see the argument in more detail,
let us write the prior (7.3) as

P [f ] ∝ e−‖f‖
2
K = e−

∑M

n=1
(a2
n/λn),

where M is the dimensionality of the RKHS, with possibly M = ∞. Of course,
functions f can be represented as vectors a in the reference system of the eigenfunctions
φn of the kernel K since

f (x) =
M∑
n=1

anφn(x). (7.5)

The stabilizer

‖f‖2
K =

M∑
n=1

a2
n

λn
= aTΛ−1a

can, of course, also be expressed in any other reference system (φ′ = Aφ) as

‖f‖2
K = bTΣ−1b,

which suggests that Σ can be interpreted as the covariance matrix in the reference
system of the φ′. It is clear in this setting that the stabilizer can be regarded as the
Mahalanobis distance of f from the mean of the functions. P [f ] is, therefore, a
multivariate Gaussian with zero mean in the Hilbert space of functions defined by K
and spanned by the φn:

P [f ] ∝ e−‖f‖
2
K = e−(bTΣ−1b).

Thus the stabilizer can be related to a Gaussian prior on the function space.
The interpretation is attractive since it seems to capture the idea that the stabilizer

effectively constrains the desired function to be in the RKHS defined by the kernel K.
It also seems to apply not only to classical regularization but to any functional of the
form

H[f ] =
1
l

l∑
i=1

V
(
yi − f (xi)

)
+ λ‖f‖2

K , (7.6)

where V (x) is any monotonically increasing loss function (see [40]). In particular it
can be applied to the SVM (regression) case in which the relevant functional is

1
l

l∑
i=1

∣∣yi − f (xi)
∣∣
ε

+ λ‖f‖2
K . (7.7)

In both cases, one can write appropriate P [Dl | f ] and P [f ] for which the MAP
estimate of

P [f | Dl] ∝ P [Dl | f ]P [f ]
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gives either equation (7.6) or equation (7.7). Of course, the MAP estimate is only
one of several possible. In many cases, the average of f =

∫
f dP [f | Dl] may

make more sense24 (see [58]). This argument provides a formal proof of the well-
known equivalence between Gaussian processes defined by the previous equation with
P [f | Dl] Gaussian and the RN defined by equation (7.1)25.

In the following we comment separately on the stabilizer – common to RN and
SVM – and on the data term – which is different in the two cases.

7.2. Bayesian interpretation of the stabilizer in the RN and SVM functionals

Assume that the problem is to estimate f from sparse data yi at location xi. From
the previous description it is clear that choosing a kernel K is equivalent to assuming
a Gaussian prior on f with covariance equal to K. Thus choosing a prior through K
is equivalent (a) to assume a Gaussian prior, and (b) to assume a correlation function
associated with the family of functions f . The relation between positive definite kernels
and correlation functions K of Gaussian random processes is characterized in detail
in [102, theorem 5.2]. In applications it is natural to use an empirical estimate of
the correlation function, whenever available. Notice that in the MAP interpretation a
Gaussian prior is assumed in RN as well as in SVM. For both RN and SVM when
empirical data are available on the statistics of the family of functions of the form (7.5)
one should check that P [f ] is Gaussian and make it zero-mean. Then an empirical
estimate of the correlation function E[f (x)f (y)] (with the expectation relative to the
distribution P [f ]) can be used as the kernel. Notice also that the basis functions
φn associated with the positive definite function K(x, y) correspond to the Principal
Components associated with K26.

7.3. Bayesian interpretation of the data term in the Regularization and SVM
functional

As we already observed, the model of the noise that has to be associated with
the data term of the SVM functional is not Gaussian additive as in RN. The same is
true for the specific form of Basis Pursuit De-Noising considered in section 8, given
the equivalence with SVM. Data terms of the type V (yi − f (xi)) can be interpreted
[40] in probabilistic terms as non-Gaussian noise models. Recently, Pontil et al. [75]
have derived a noise model corresponding to Vapnik’s ε-insensitive loss function. It

24 In the Gaussian case – Regularization Networks – the MAP and the average estimates coincide.
25 Ironically, it is only recently that the neural network community seems to have realized the equivalence

of many so-called neural networks and Gaussian processes and the fact that they work quite well (see
[55] and references therein).

26 We neglect here the question about how accurate the empirical estimation is.
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turns out that the underlying noise model consists of the superposition of Gaussian
processes with different variances and means, that is,27

exp
(
−|x|ε

)
=

∫ +∞

−∞
dt
∫ ∞

0
dβλ(t)µ(β)

√
β exp

(
−β(x− t)2), (7.8)

with

λε(t) =
1

2(ε + 1)

(
χ[−ε,ε](t) + δ(t − ε) + δ(t+ ε)

)
, (7.9)

µ(β) ∝ β2 exp

(
− 1

4β

)
, (7.10)

where χ[−ε,ε](t) is 1 for t ∈ [−ε, ε], 0 otherwise. For the derivation see [75]. Notice
that the variance has a unimodal distribution that does not depend on ε, and the
mean has a distribution which is uniform in the interval [−ε, ε], (except for two delta
functions at ±ε, which ensures that the mean has not zero probability to be equal
to ±ε). The distribution of the mean is consistent with the current understanding of
Vapnik’s ILF: errors smaller than ε do not count because they may be due entirely to
the bias of the Gaussian noise.

7.4. Why a MAP interpretation may be misleading

We have just seen that minimization of both the RN and the SVMR functionals
can be interpreted as corresponding to the MAP estimate of the posterior probability
of f given the data, for certain models of the noise and for a specific Gaussian prior on
the space of functions f . However, a MAP interpretation of this type may in general
be inconsistent with Structural Risk Minimization and more generally with Vapnik’s
analysis of the learning problem. The following argument due to Vapnik shows the
general point.

Consider functionals (4.1) and (5.1). From a Bayesian point of view, instead
of the parameter λ – which in RN and SVM is a function of the data (through the
SRM principle) – we have λ̃ which depends on the data as α/l: the constant α has
to be independent of the training data (i.e., their size l). On the other hand, as we
discussed in section 2, SRM dictates a choice of λ depending on the training set. It
seems unlikely that λ could simply depend on α/l as the MAP interpretation requires
for consistency. Figure 1 gives a preliminary empirical demonstration that in the case
of SVMR the “Bayesian” dependence of λ as α/l may not be correct.

Fundamentally, the core of Vapnik’s analysis is that the key to learning from
finite training sets is capacity control, that is the control of the complexity of the
hypothesis space as a function of the training set. From this point of view the ability
to choose λ as a function of the training data is essential to our interpretation of
Regularization and SVM in terms of the VC theory (compare the procedure described

27 In the following we introduce the variable β = (2σ2)−1.
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Figure 1. An experiment (suggested by V. Vapnik) where the optimal λ does not simply depend on the
training set as λ = α/l with α a constant and l the number of data points in the training set. In the right
figure we plot λl as a function of the number of data. The data were generated from a 1-D sinusoid
along 3 periods, with small uniform noise added. A SVMR with Gaussian kernel was used. We scaled
the ordinate by 50 to compare with the log(log(l)) plot shown on the left. The number of training data
ranged from 10 to 500. For each l we plot λl with λ being the optimal one (i.e., 2/C for the SVMR)
estimated by using the true function for validation. The right figure shows that λl is not a constant as

the MAP interpretation would require.

in our SRM section 2). Full capacity control and appropriate dependency of λ on the
training set, which we expect in the general case not to be simply of the form α/l, is
lost in the direct MAP interpretation that we described in this chapter. Of course, an
empirical Bayesian interpretation relying on hyper-parameters in the prior is possible
and often useful but it amounts to little more than a parametric form for the posterior
distribution, usually used in conjunction with maximum likelihood estimation of the
parameters from the data.

8. Connections between SVMs and Sparse Approximation techniques

In recent years there has been a growing interest in approximating functions and
representing signals using linear superposition of a small number of basis functions
selected from a large, redundant set of basis functions, called a dictionary. These
techniques go under the name of Sparse Approximations (SAs) [17,18,21,24,26,42,
57,65]. We will start with a short overview of SAs. Then we will discuss a result
due to Girosi [38] that shows an equivalence between SVMs and a particular SA
technique. Finally, we will discuss the problem of Independent Component Analysis
(ICA), another method for finding signal representations.

8.1. The problem of sparsity

Given a dictionary of basis functions (for example, a frame, or just a redundant
set of basis functions) {ϕ1(x), . . . ,ϕn(x)} with n very large (possibly infinite), SA
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techniques seek an approximation of a function f (x) as a linear combination of the
smallest number of elements of the dictionary, that is, an approximation of the form

fc(x) =
n∑
j=1

cjϕj(x), (8.1)

with the smallest number of non-zero coefficients ci. Formally, the problem is formu-
lated as minimizing the following cost function:

E[c] = D

(
f (x),

n∑
j=1

cjϕj(x)

)
+ ε‖c‖L0 , (8.2)

where D is a cost measuring the distance (in some predefined norm) between the true
function f (x) and our approximation, the L0-norm of a vector counts the number of
elements of that vector which are different from zero, and ε is a parameter that controls
the trade off between sparsity and approximation. Observe that the larger ε is in (8.2),
the more sparse the solution will be.

In the more general case of learning function f is not given, and instead we have
a data set Dl = {(x1, y1), . . . (xl, yl)} of the values yi of f at locations xi28. Note that
in order to minimize E[c] we need to know f at all points x. In the learning paradigm,
in the particular case that

D

(
f (x),

n∑
j=1

cjϕj(x)

)
=

∥∥∥∥∥f (x)−
n∑
j=1

cjϕj(x)

∥∥∥∥∥
2

L2

,

the first term in equation (8.2) is replaced by an empirical one, and (8.2) becomes

1
l

l∑
i=1

(
yi −

n∑
j=1

cjϕj(xi)

)2

+ ε‖c‖L0 . (8.3)

Minimizing (8.2) can be used as well to find sparse approximations in the case
that the function f is generated by a function f0 corrupted by additive noise. In this
case the problem can be formulated as finding a solution c to

f = Φc + η (8.4)

with the smallest number of non-zero elements, where Φ is the matrix with columns
the elements of the dictionary, and η is the noise. If we take a probabilistic approach
and the noise is Gaussian, the problem can again be formulated as minimizing

E[c] =

∥∥∥∥∥f (x)−
n∑
j=1

cjϕj(x)

∥∥∥∥∥
2

L2

+ ε‖c‖L0 . (8.5)

28 For simplicity we consider the case where P (x) is the uniform distribution.
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Unfortunately, it can be shown that minimizing (8.2) is NP-hard because of the
L0-norm. In order to circumvent this shortcoming, approximated versions of the cost
function above have been proposed. For example, in [17,18] the authors use the
L1-norm as an approximation of the L0-norm, obtaining an approximation scheme
that they call Basis Pursuit De-Noising (BPDN) which consists of minimizing

E[c] =

∥∥∥∥∥f (x)−
n∑
j=1

cjϕj(x)

∥∥∥∥∥
2

L2

+ ε
n∑
j=1

|cj |. (8.6)

8.2. Equivalence between BPDN and SVMs

In this section we consider the particular case in which we are given a data set
Dl = {(x1, y1), . . . , (xl, yl)}, and the dictionary consists of basis functions of the form

ϕi(x) = K(x, xi) ∀i = 1, . . . , l, (8.7)

where K is the reproducing kernel of a RKHS H, and the size l of Dl is equal
to the size n of the dictionary. Moreover, following [38], we assume that f (x) in
equation (8.2) is in the RKHS, and we use as the cost D in (8.2) the norm in the
RKHS H induced by the kernel K, and approximate the L0-norm with L1. Under
these assumptions, we get the SA technique that minimizes

E[c] =

∥∥∥∥∥f (x)−
n∑
j=1

cjϕi(x)

∥∥∥∥∥
2

K

+ ε‖c‖L1 (8.8)

subject to f (xi) = yi.
It can be shown [38] that this technique is equivalent to SVMR in the following

sense: the two techniques give the same solution, which is obtained by solving the same
quadratic programming problem. Girosi [38] proves the equivalence between SVMR
and BPDN under the assumption that the data set {(xi, yi)}li=1 has been obtained by
sampling, in absence of noise, the target function f . Functional (8.8) differs from
(8.6) only in the cost D. While Chen et al., in their BPDN method, measure the
reconstruction error with an L2-criterion, Girosi measures it by the true distance, in
the H norm, between the target function f and the approximating function f∗. This
measure of distance, which is common in approximation theory, is better motivated
than the L2-norm because it not only enforces closeness between the target and the
model, but also between their derivatives, since ‖ · ‖K is a measure of smoothness.

Notice that from equation (8.8) the cost function E cannot be computed because
it requires the knowledge of f (in the first term). If we had ‖ · ‖L2 instead of ‖ · ‖K
in equation (8.8), this would force us to consider the approximation

∥∥f (x)− f∗(x)
∥∥2
L2
≈ 1
l

l∑
i=1

(
yi − f∗(xi)

)2
. (8.9)
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However, if we used the norm ‖ · ‖K we can use the reproducing property (3.1)
obtaining (see [38])

E[c] =
1
2

(
‖f‖2

K +
l∑

i,j=1

cicjK(xi; xj )− 2
l∑
i=1

ciyi

)
+ ε‖c‖L1 . (8.10)

Observe that functional (8.10) is the same as the objective function of SVM
of problem 5.3 up to the constant 1

2‖f‖2
K . However, in the SVM formulation the

coefficients ci satisfy two constraints, which in the case of sparsity are trivially satisfied
under further assumptions. For details see [38]. It also follows from equations (8.1)
and (8.7) that the approximating function is of the form

f∗(x) ≡ fc(x) =
l∑
i=1

ciK(x; xi). (8.11)

This model is similar to the one of SVM (equation (5.3)), except for the constant b.
This relation between SVMR and SA suggests directly that SVM yield a sparse

representation.

8.3. Independent Component Analysis

Independent Component Analysis (ICA) is the problem of finding unknown
sources whose linear superposition gives a number of observed signals, under the
only assumption that the sources are statistically independent. A particular application
is Blind Source Separation (BSS) where one is given a signal and seeks to decompose
it as a linear combination of a number of unknown statistically independent sources.
Following the notation in [4], the problem can be formulated as finding at any time t
both the n (n predefined) sources x(t) = (x1(t), . . . ,xn(t)) and the mixing matrix A
(which is assumed to be the same for every t) of the system of linear equations

s(t) = Ax(t) + η, (8.12)

where s(t) is our observed signal at time t, the elements of x(t), namely xi(t), are
generated by statistically independent sources, and η is additive noise.

Observe that for any t the formulations of ICA and SA (see equation (8.4)) are
similar (Φ is A, f is s(t) and c is x(t)). The difference is that in the case of SA we
know the mixing matrix (“basis”) A (Φ) and we only solve for the sources x (c) with
the smallest number of non-zero elements, while for ICA and BSS both the matrix A
and the sources x are unknown, and we assume that xi(t) are statistically independent,
while we do not have any explicit restriction on A.

Various methods for ICA have been developed in recent years [3,9,53,63,65].
A review of the methods can be found in [52]. Typically the problem is solved
by assuming a probability distribution model for the sources xi(t). A typical prior
distribution is the Laplacian, namely P (x(t)) ∝ e|x1(t)|+···+|xn(t)|. Moreover, if the
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noise η is Gaussian with zero mean and variance σ2, then, for a given A, the probability
of s(t) given A can be written as

P
(
s(t) | A

)
= P

(
s(t) | A, x(t)

)
P
(
x(t)
)
∝ e||s(t)−Ax(t)||2/(2σ2)e|x1(t)|+···+|xn(t)|. (8.13)

The MAP estimate of (8.13) gives x(t) as the minimizer of∥∥s(t)−Ax(t)
∥∥2

+ ε ·
n∑
i=1

∣∣xi(t)∣∣. (8.14)

Observe that this is the same as that of BPDN (equation (8.6)). Therefore, for
a fixed A the sources can be found by solving a (BPDN) problem. In fact, iterative
methods where at every iteration A is fixed and the sources are found, and then for
fixed sources, A is updated using a learning rule have been developed in [65].

To summarize, using a Laplacian prior on the sources and following an iterative
method for solving both for the sources and for their linear combination, ICA and BSS
can be seen as iterative methods where at each iteration one solves a SA problem. This
connection between ICA and sparsity has also been studied in [64]. Notice that if the
prior on the sources is different, in particular if it is super-Gaussian, then the solution
at every iteration need not be sparse.

9. Remarks

9.1. Regularization Networks can implement SRM

One of the main focuses of this review is to describe and motivate the classical
technique of regularization – minimization of functionals such as in equation (1.1)
– within the framework of VC theory. In particular we have shown that classical
regularization functionals can be motivated within the statistical framework of capacity
control.

9.2. The SVM functional is a special formulation of regularization

Throughout our review it is clear that classical Regularization Networks, as well
as Support Vector Machines for regression and Support Vector Machines for classifi-
cation (see table 2), can be justified within the same framework, based on Vapnik’s
SRM principle and the notion of Vγ-dimension. The three functionals of the table
have different loss functions V (·, ·) but the same stabilizer. Thus the minimizer has
the same general form and, as a consequence, the associated network has the same ar-
chitecture. In particular, RKHS, associated kernels, and the mapping they induce from
the input space into a higher dimensional space of features φn, are exactly the same in
SVM as in RN. The different loss functions of SVM determine however quite different
properties of the solution (see table 2) which is, unlike regularization, sparse in the cn.
Notice that loss functions different from quadratic loss have been used before in the
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Table 2
A unified framework: the minimizer of each of these three functionals always
has the same form: f (x) =

∑l

i=1
ciK(x, xi) or f (x) =

∑l

i=1
ciK(x, xi) + b. In

classification the decision function is sign (f (x)).

Classical regularization H[f ] =
1
l

l∑
i=1

(yi − f (xi))
2 + λ‖f‖2

K

SVM Regression (SVMR) H[f ] =
1
l

l∑
i=1

|yi − f (xi)|ε + λ‖f‖2
K

SVM Classification (SVMC) H[f ] =
1
l

l∑
i=1

|1− yif (xi)|+ + λ‖f‖2
K

context of regularization. In particular, the physical analogy of representing the data
term using nonlinear spring (classical L2-regularization corresponds to linear springs)
was used and studied before (see, for instance, [40]). It is, however, the specific choice
of the loss functions in SVMC and SVMR that provides several of their characteristic
features, such as sparsity of the solution. Notice also that the geometric interpretation
of ‖f‖2

K in terms of the margin [96] is true only for the classification case and depends
on the specific loss function V (·, ·) used in SVMC.

9.3. SVM, sparsity and compression

From the Kuhn–Tucker conditions of the QP problem associated with SVM one
expects the Support Vectors to be usually sparser than the data. Notice that this is not
obvious from a direct inspection of the functional H[f ] itself, where the regularizer
is an L2-norm on the function space. Especially in the case of regression it is not
immediately obvious that the H[f ] in SVMR should yield a sparser solution than
the H[f ] of classical regularization (see table 2). The equivalence of SVMR with
a special form of Basis Pursuit Denoising shows that the ε-insensitive loss function
with an L2-regularizer is equivalent to an L2-loss function and an L1-regularizer. The
latter is known to yield sparsity, though it is only an approximation of a “true” sparsity
regularizer with the L0-norm. Notice that SVM – like regularization – uses typically
many features φn, but only – unlike regularization – a sparse subset of the examples.
Thus SVM is not sparse in the primal representation (see section 3) of the classifier
(or regressor) but it is sparse in the dual representation since it tends to use a subset
of the dictionary consisting of the set of K(x, xi).

In this context, an interesting perspective on SVM is to consider its information
compression properties. The support vectors represent in this sense the most informa-
tive data points and compress the information contained in the training set: for the
purpose of, say, classification of future vectors, only the support vectors need to be
stored, while all other training examples can be discarded. There is in fact a rela-
tion between the compression factor expressed as the ratio of data points to support
vectors and the probability of test error. Vapnik [96], in comparing the empirical risk
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minimization principle with the Minimum Description Length principle [81], derives
a bound on the generalization error as a function of the compression coefficient.

9.4. Gaussian processes, regularization and SVM

The very close relation between Gaussian processes and RN is well known
[58,102]. The connection is also valid for SVM in regression as well as in classifica-
tion, since it depends on the form of the stabilizer, which is the same. The functional
H of classical regularization is the exponent of the Gaussian conditional probabil-
ity distribution characterizing the Gaussian process. The MAP estimate applied to
the probability distribution corresponds to minimization of H yielding Regularization
Networks – of which Radial Basis Function networks are a special case. Thus RN are
connected to Gaussian processes via the MAP estimate, which in this case coincides
with another estimate – the posterior mean.

9.5. Kernels and how to choose an input representation

A key issue in every learning problem concerns the input (and output) rep-
resentation. This issue is outside the scope of the theory outlined in this review.
There are however a few interesting observations that can be made. As pointed out
by Vapnik, the choice of the kernel K is equivalent to choosing features related to
the original inputs x by well-behaved functions φn(x), where the φn are defined by
K(x, y) ≡

∑N
n=1 λnφn(x)φn(y). Assume that K is given and that the input represen-

tation is now changed through a vector function h(x) mapping the original input x into
the new feature vector h. This is equivalent to using a new kernel K ′ defined in terms
of the composite features φn(h(x)) as K ′(x, y) ≡

∑N
n=1 λnφn(h(x))φn(h(y)). For ex-

ample, in the case of a polynomial kernel K = (1 + x · y)d, a linear transformation of
the input data x′ = P Tx is equivalent to using a new kernel K ′(x, y) = (1 + xPP Ty)d.
Clearly, in the case that the projection is onto an orthonormal basis so that matrix
P is orthonormal, the transformation does not affect the learning machine. On the
other hand, if P is a matrix whose columns form an overcomplete or undercomplete
set of basis functions, the transformation can change the learning machine. In many
cases – especially when K is an expansion in an infinite series of φn – the most
natural description is in terms of the kernel itself. In other cases, the best strategy
is to define a finite set of features φn and then construct the kernel by computing
K(x, y) =

∑N
n=1 λnφn(x)φn(y).

9.5.1. Synthesis of kernels from kernels
There are several symmetric positive definite kernels and a number of ways to

construct new ones from existing kernels by operating on them with a few operations
such as addition and convolution. For instance, if K1 and K2 are kernels then K1 +K2

is a kernel and K1K2 is a kernel; (K1)n is a kernel. Thus the kernel
∑d

i=0(x · y)i

corresponds to the features of a polynomial of degree d in the spirit of [68]; Vapnik’s
kernel K(x, y) = (1 + x · y)d is, in fact, equivalent and more compact. Aronszajn [5]
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describes several ways to construct positive definite kernels and thereby the associated
RKHS. A completely equivalent analysis exists for correlation functions.

9.5.2. Exploiting prior information
In practical problems the choice of the regressors is often much more important

than the choice of the learning machine. The choice of an appropriate input rep-
resentation depends of course on prior information about the specific regression or
classification problem. A general theory on how to use prior information to determine
the appropriate representation is likely to be very far away. There are, however, a few
approaches which yield some promise.

• Kernels and estimates of correlation functions.
Assume that the problem is to estimate f from sparse data yi at location xi. As we
described in section 7, let us assume that there is prior information available in terms
of the correlation function R(x, y) = E[f (x)f (y)] of the family of functions to which
f belongs. In applications, for instance, it may be possible to obtain an empirical
estimate of the correlation function. From a Bayesian point of view this prior
information together with the assumption of a Gaussian prior, determines the choice
of the kernel K = R and this automatically determines the feature representation
– the φn – to be used in the regression problem. Preliminary experiments indicate
that this strategy may give better results than other regression approaches [66].

• Invariances and virtual examples.
In many pattern recognition problem specific invariances are known to hold a priori.
Niyogy et al. [62] showed how several invariances can be embedded in the stabilizer
or, equivalently, in virtual examples (for a related work on tangent distance see
[84,89]).

• Generative probabilistic models.
Jaakkola and Haussler [47] consider the case in which prior information is available
in terms of a parametric probabilistic model P (x, y) of the process generating the
data. They argue that good features for classification are the derivatives of logP
with respect to the natural parameters of the distributions at the data points.

9.6. Capacity control and the physical world

An interesting question, outside the realm of mathematics, which has been asked
recently is why large margin classifiers seem to work well in the physical world.
As we saw throughout this review, the question is closely related to the question
of why to assume smoothness in regression, that is why to use stabilizers such as
‖f‖2

K , which are usually smoothness functionals. Smoothness can be justified by
observing that in many cases smoothness of input–output relations are implied directly
by the existence of physical laws with continuity and differentiability properties. In
classification, minimization of ‖f‖K corresponds to maximization of the margin in
the space of the φn; it is also equivalent to choosing the decision boundary resulting
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from thresholding the smoothest f in the original space, according to the smoothness
criterion induced by K (notice that the decision boundary is the level crossing of f and
not necessarily smooth everywhere). Conversely, we would not be able to generalize
for input-output relations that are not smooth, that is for which “similar” inputs do
not correspond to “similar” outputs (in an appropriate metric!). Such cases exist: for
instance the mapping provided by a telephone directory between names and telephone
numbers is usually not “smooth” and it is a safe bet that it would be difficult to learn
it from examples. In cases in which physical systems are involved, however, input-
output relations have some degree of smoothness and can be learned. From this point
of view large margin (in feature space) and smoothness are properties of the physical
world that are key to allow generalization, learning and the development of theories
and models.
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[41] W. Härdle, Applied Nonparametric Regression, Econometric Society Monographs, Vol. 19 (Cam-
bridge University Press, 1990).

[42] G.F. Harpur and R.W. Prager, Development of low entropy coding in a recurrent network, Network
7 (1996) 277–284.

[43] T. Hastie and R. Tibshirani, Generalized Additive Models, Monographs on Statistics and Applied
Probability, Vol. 43 (Chapman and Hall, London, 1990).

[44] S. Haykin, Neural Networks: A Comprehensive Foundation (Macmillan, New York, 1994).
[45] H. Hochstadt, Integral Equations, Wiley Classics Library (Wiley, New York, 1973).
[46] V.V. Ivanov, The Theory of Approximate Methods and Their Application to the Numerical Solution

of Singular Integral Equations (Noordhoff International, Leiden, 1976).
[47] T. Jaakkola and D. Haussler, Probabilistic kernel regression models, in: Proc. of Neural Information

Processing Conference (1998).
[48] I.R.H. Jackson, Radial Basis Functions methods for multivariate approximation, Ph.D. thesis,

University of Cambridge, UK (1988).
[49] M. Kearns, Y. Mansour, A. Ng and D. Ron, An experimental and theoretical comparison of model

selection methods, in: Proceedings of the 8th Annual ACM Conference on Computational Learning
Theory (1995).

[50] M. Kearns and R. E. Shapire, Efficient distribution-free learning of probabilistic concepts, J. Com-
put. Syst. Sci. 48(3) (1994) 464–497.

[51] G.S. Kimeldorf and G. Wahba, A correspondence between Bayesan estimation on stochastic
processes and smoothing by splines, Ann. Math. Statist. 41(2) (1971) 495–502.

[52] T.-W. Lee, M. Girolami, A.J. Bell and T. Sejnowski, A unifying information-theoretical framework
for independent component analysis, Internat. J. Math. Comput. Mod. (1998) to appear.

[53] M. Lewicki and T. Sejnowski, Learning nonlinear overcomplete representation for efficient coding,
in: Advances in Neural Information Processing System (1997).

[54] G.G. Lorentz, Approximation of Functions (Chelsea, New York, 1986).
[55] D.J.C. MacKay, Introduction to Gaussian processes (1997) (available at the URL: http://wol.ra.

phy.cam.ac.uk/mackay).
[56] W.R. Madych and S.A. Nelson, Polyharmonic cardinal splines: a minimization property, J. Approx.

Theory 63 (1990) 303–320.
[57] S. Mallat and Z. Zhang, Matching Pursuit in a time–frequency dictionary, IEEE Trans. Signal

Process. 41 (1993) 3397–3415.
[58] J.L. Marroquin, S. Mitter and T. Poggio, Probabilistic solution of ill-posed problems in computa-

tional vision, J. Amer. Statist. Assoc. 82 (1987) 76–89.
[59] H.N. Mhaskar, Neural networks for localized approximation of real functions, in: Neural Networks

for Signal Processing III, Proceedings of the 1993 IEEE-SP Workshop, eds. C.A. Kamm et al.
(IEEE Signal Processing Society, New York, 1993) pp. 190–196.

[60] C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite
functions, Constr. Approx. 2 (1986) 11–22.

[61] P. Niyogi and F. Girosi, On the relationship between generalization error, hypothesis complexity,
and sample complexity for radial basis functions, Neural Comput. 8 (1996) 819–842.

[62] P. Niyogi, F. Girosi and T. Poggio, Incorporating prior information in machine learning by creating
virt ual examples, Proc. IEEE 86(11) (1998) 2196–2209.



T. Evgeniou et al. / Regularization Networks and Support Vector Machines 49

[63] E. Oja, The nonlinear pca learning rule in independent component analysis, Neurocomput. 17
(1997) 25–45.

[64] B. Olshausen, Learning linear, sparse, factorial codes, A.I. Memo 1580, MIT Artificial Intelligence
Lab. (1996).

[65] B.A. Olshausen and D.J. Field, Emergence of simple-cell receptive field properties by learning a
sparse code for natural images, Nature 381 (1996) 607–609.

[66] C. Papageorgiou, F. Girosi and T. Poggio, Sparse correlation kernel based signal reconstruction,
Technical Report 1635, Artificial Intelligence Laboratory, Massachusetts Institute of Technology
(1998). (CBCL Memo 162.)

[67] G. Parisi, Statistical Field Theory (Addison-Wesley, Reading, MA, 1988).
[68] T. Poggio, On optimal nonlinear associative recall, Biological Cybernetics 19 (1975) 201–209.
[69] T. Poggio and F. Girosi, A theory of networks for approximation and learning, A.I. Memo No.

1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (1989).
[70] T. Poggio and F. Girosi, Networks for approximation and learning, Proc. IEEE 78(9) (1990).
[71] T. Poggio and F. Girosi, Networks for approximation and learning, in: Foundations of Neural

Networks, ed. C. Lau (IEEE Press, Piscataway, NJ, 1992) pp. 91–106.
[72] T. Poggio and F. Girosi, A sparse representation for function approximation, Neural Comput. 10(6)

(1998).
[73] T. Poggio, V. Torre and C. Koch, Computational vision and regularization theory, Nature 317

(1985) 314–319.
[74] D. Pollard, Convergence of Stochastic Processes (Springer, Berlin, 1984).
[75] M. Pontil, S. Mukherjee and F. Girosi, On the noise model of support vector machine regression,

A.I. Memo, MIT Artificial Intelligence Laboratory (1998) (in preparation).
[76] M. Pontil, R. Rifkin and T. Evgeniou, From regression to classification in support vector machines,

A.I. Memo 1649, MIT Artificial Intelligence Lab. (1998).
[77] M.J.D. Powell, The theory of radial basis functions approximation in 1990, in: Advances in

Numerical Analysis Volume II: Wavelets, Subdivision Algorithms and Radial Basis Functions, ed.
W.A. Light (Oxford University Press, 1992) pp. 105–210.

[78] C. Rabut, How to build quasi-interpolants. Applications to polyharmonic B-splines, in: Curves
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